M68KMASM/D8

M68000 Family
Resident Structured Assembler
Reference Manual

Ny
Rt T e
et K TS e

BT -

QUALITY e PEOPLE e PERFORMANCE

M68KMASM/D8

JULY 1984

M68000 FAMILY
RESIDENT STRUCTURED ASSEMBLER

REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

EXORmacs, SYMbug, SYSTEM V/68, VERSAJdos, VERSAmodule, VMC 68/2, VMEmodule, and
VME/10 are trademarks of Motorola Inc.

This edition incorporates the information in any addendums to previous releases
of this manual.

Eighth Edition
Copyright 1984 by Motorola Inc.
Seventh Edition July 1983

CHAPTER 1

e o ¢ e o e o o o »
OV bW WWwiv -
¢« o o .« e

w N - N =

= e b b e b e

. . .

CHAPTER 2

o e a ® o o o o s o
. e« o o &
oW N

e e
3

RN DNNDNDDNNNDNDNDNNDNDDNDNDDNDDDDNDN
L]
NUTUUTN TV U bR WN

. o
¢« o o
NNNDMNDNNDDNDDNDDND

2.5.2.7

2.5.2.8

TABLE OF CONTENTS

GENERAL INFORMATION

SCOPE 0 000 0000000000000 00000 0000800000000 00008000000s00s00

INTRODUCTION ceveecocococsccsccccsascscsosnnsscsssosscscssccnsss
M68000 FAMILY ASSFEMBLY LANGUAGE ceeeeveccccsaccscccsoccccs
Machine-instruction Operation COdeS cecescscsccceccccccs
DIireCtiVeS ceeeceescccscssrsscnsssnssssresssossscssscnses
M68000 FAMILY RESIDENT STRUCTURED ASSFMBLER cecesccocaccns
ASSeMbler PUXPOSES ceeesscosscosscssesassssnsccsccssnssases
Assembler ProCeSSIiNg eeessecssescessssccccssssssscssscccs
MiCroprocesSsor TYPES eeeescessessssesscsssscscacssonscss
RELOCATION AND LINKAGE cecosccacccccscsccscsoscscscsccsnsccs
LINKER RESTRICTIONS ceosececesacscscsscscscsssscscscscsccscscscsss

NOTATION ® 9 00 00000 L PP PP0OIPPECLO00 0000000000000 SNIOISILOITOIOTE

RELATED PUBLICATIONS P8 000 0080000000000 00000000006000000000

SOURCE PROGRAM CODING

INTRODUCTION seseesesacoccscsocacsercccscosnscsccsscsossscsssss
COMMENTS ceeececscccscsscccsscscnssccsscssnscccsscscnsscssanssss
EXECUTABLE INSTRUCTION FORMAT oeesecsceccccccsscccccsosocs
SOURCE LINE FORMAT G O 0 0080000 08 POOOPOOOSO OO OSSOSO E SIS SN
Label Field sesececssosscsccsssessccsscscossossosscsscscss
Operation Field ceeeeeccecssecccccacscscscsscscssscocccse
Operand Field seeeesceesessesscssesssascsscssssssssossnese
Comment Fi€ld seeecessscsscvsssccscssssscssscccsccssscnse
ADDRESSING MODES «cceessvessvressocsssascscscssssssssscsessses
Register Direct MOJES eeeescescssccscsccsscsscsssssconss
MemOYy AJAYESS seeessseecssssossccscsessssssssnccssnssos
Address Register INdireCt .seeeecescsessoccsscossecssss
Address Register Indirect with Postincrement ssseeecss
Address Register Indirect with Predecrement ...ceeeeees
Address Register Indirect with Displacement cesescecees
Address Register Indirect with INdeX secececssssacesss
Address Register Indirect with Preindexing Plus
Base and Outer Displacement (MC68020 ONly) seessesee
Address Register Indirect with Postindexing Plus
Base and Outer Displacements (MC68020 Only) eeeeeses
Address Register Direct with Indexing Plus Base
Displacement (MC68020 ONlY) tecececocccessccsscsoscs
Special AJdress MOJES sececsssscesoassssscccsssssscssass
Absolute Short AJJYeSS eesesscccsssessscersssccssscsssns
Absolute Long AJAYrESS ceseecssessscossscvasssssssscecs
Program Counter with Displacement .seeeseccecssssceccsse
Program Counter with INJeX seeecsscescssesssccsscscses
Program Counter with Preindexing Plus Base and
Outer DisplacamentsS cecececcesessccoscssasossscsscne
Program Counter with Postindexing Plus Base and
Outer Displacements (MC68020 ONlY) eceesescccscasscne
Program Counter Direct with Indexing Plus Base
Displacement (MC68020 ONlY) ceeesoessscsasssssssnsce
Inmediate DAta seseesssesesescssesssssscsssascscsscscs
NOTES ON MC68020 ADDRESSING MODES seesesccsscsssacsssccsnse
Address Register Addressing MOAES ececesescccscsccccccensne

i

Page

1-1
1-1
1-2
1-2
1-2
1-2
1-3
1-3

1-3
1-4
1-4
1-5

2-9

2-9

2-10
2-10
2-10

2-11
2-12

2-13
2-14
2-14
2-14
2-15
2=15

2-16
2=17
2-18
2-18

2-19
2-19

NN
.
[=)}
e o
w N

e & o o ¢ ¢ o o o o o .
.
. >

L]
= o b o D e b i e e b b el el el e et e et e e (O 00 00 00 00 00 0 ~J O
OO0 OO
[} [] L] L]
=00 IO U W N
= O

0.12
0.13
0.14
0.15
0.15.1
.15.2
.16
.16.1
.16.2
0.17
0.17.1
0.17.2
0.18
0.18.1
0.18.2
0.19
10.19.1
0.19.2
0.20
0.20.1
0.20.2

QOO0

e e @ o o o 0 o o o o

0.23

NNMNNNNNMNNNNNONNNNNONNONONNONNNNNNNNNNNONNMONNNNONNNRODNNNONNNODNNDNDNNDND NN
° e o o o
= e e e e 2 e e

TABLE OF CONTENTS (cont'd)

Program Counter Relative Addressing ModeS .eeesessccsse
Using Suppressed Registers to Force Redundant
AJdressing MOdES ceceecsessessccsccssessscssosscssocsse
AJAressing SUMMAYY sseecccsecscsssssosssscsesssssscnsses
NOTES ON ADDRESSING OPTIONS seseceosecccscsscscoccscscess
SYMBOLS AND EXPRESSIONS eeececsccescescccscccssscossscsce
SYMDOLS ceesececccsoccasscsscsacasscssssssssassssacssssns
Symbol Definition ClaSSES eeeessecsescccsssessossccsscss
User-Defined LabelS seeeesscessscescssccsscccssscssccnss
Integer EXPreSSIiONS seeeecsscsscsccssssssesssssssscnsass
Operator PrecedenCe ceeesecessecssscsccsssccccsssssscosse
REGISTERS seceovoocscecscccccccoscsssosccssocosscssssssnsososse
INSTRUCTION MNEMONICS sececcvoccccssocenssososcssosscscsscsase
Arithmetic OperationsS secesssecescscessscssssccsssessans
MOVE INStrUCtiON seesecsessvccsscsscssscsccssssscoccans
Compare and Check INStrUCtiONS seeecesccescscssssccnnss
Logical OperationS ceeeceesscesscccsssscsssscssscssanss
Shift OPEratiONS ceeseeecesssssessossscssscccsesssssansns
Bit OperationsS seecccececesscccscsscssssencsnssssscsnss
Conditional OperationS seeeeecseccssescsccesssesssonsse
Branch OperatiOnS eeceesescsceccssssssccccscsasssssnness
Jump OPeratiONS sesessssceecssssccccscssassscssscsssssace
DBCC INSErUCLION seevessescssscocesssosssscscccsosesens
Load/Store Multiple RegiSLErS ceeececssscsccccsssssacce
Load Effective AAAYESS seeesscescccsscscssacesssossssasns
Move to/from Control RegiSLEr seeecececsscssassscccsssccs
Move to/from AJAresSS SPACE eeesecosscsccsssscssssssscscss
Bit Fields and Instructions (MC68020 ONlY) seeecececose
Single Operand Bit Field Instruction seeeeecscseccsces
Double Operand Bit Field InStrucCtion sececscesesccssse
Check Instructions (MC68020 ONly) seeescesccoscccccacss
Check Register Against BoardS eesecscsscccccssesccnecs
Compare Register Against BOAXAS eeeesccccscsccscsccss
Truncated Divide Instructions (MC68020 ONly) ceeeessses
Truncated Signed Divide seeceescecscesssccccssccccsces
Truncated Unsigned Divide seeeeesccecssscsascsssscnss
Sign Extend Instructions (MC68020 ONlY) esesccccrsscoce
Sign EXtend BYLe eeeeesesccscessscsccccsessassssccssse
Sign Extend WOXd eeeececsscessccssscsssssccssscsssosse
BCD Instructions (MC68020 ONlY) eeeescsccccscsscccccnss
PACK BCD scovevccccsvsercecrcsssscsscscsssasssasscscnsas
UNPacK BCD seeeceosessssssssssssssssssssscnsssscnsans
Module Instructions (MC68020 ONlY) eececessssssscccasss
Call MOAULE seeceesssssesorssscccsnsccccccscsscsssssse
Return from MOAUIE ceeeeecssccccsccssccsccssccoccocacos
Trap on Condition Code (MC68020 ONlY) seeecssssscscscce
Compare and Swap with Operand (MC68020 ONly) eeseecesse
Breakpoint (MC68020 ONlY) ceeeeesscccecsasscssssccosase
The MC68881 Co-Processor Instruction (MC68881 only) ...
Co-Processor Branch Conditionally ceeeeccecccsssssssese
Decrement and Branch on Condition eeeeececcessscccsscs
Set on ConditioN seeeessscvsssscrcsssccsccscessscncscns
Trap on Condition, with or without a Parameter
Co-Processor Save FUNCLION seececcssesssssssccscssscen

ii

Page
2-20

2-20
2-21
2-22
2-28
2-28
2-29
2-30
2-30
2-32
2-33
2-35
2-35
2-36
2-37
2-37
2-38
2-38
2-39
2-40
2-41
2-41
2-42
2-43
2-43
2-44
2-44
2-45
2-47
2-49
2-49
2-49
2-50
2-50
2-50
2-51
2-51
2-51
2-52
2-52
2-52
2-53
2-53
2-53
2-53
2-54
2-54
2-56
2-56
2-56
2-56
2-57
2-57

TABLE OF CONTENTS (cont'd)

Page
2.10.24‘6 Restore Intelfnal State Of CO—PIOCQSSOI' 000000000000 2“57
2.10.24.7 Move to Floating-Point Register from Memory or from

Another Floating-Point Register Instruction 2-58
2.10.24.8 Move from Floating-Point Register to
Memory InStrucCtionS seessessesseccccsscsccsccascess 2=59

2,10.26.9 Floating-Point FUNCLiONS sceeeecoccsccsscsscscsssses 2=60

2.10.26.10 Floating-Point Arithmetic Operations seeceescssceees 261

2.10.26.11 Floating-Point NO-OP .ceeeeesssscccsccssccsscasssses 2=62

2.10.26.12 Floating-Point Test of an Operand c.eessscveccssscsee 2=63

2.11 VARIANTS ON INSTRUCTION TYPES seceecccscccssscssassesses 2=063
CHAPTER 3 ASSEMBLER DIRECTIVES

INTRODUCTION .veeessccossscscsccosvsassssssccssscssescssses 3=l
ASSEMBLY CONTROL eesssesscsssscssasassssssosssssssssescses 3=2
END — Program ENd ceeececesasssssssssssssssssssscscses 3=2
INCLUDE - Include Secondary File eeceseescccsessssseee 3=3
MASK2 - Assemble for MASK2 (MC68000 only) eeeecececses 3=3
OFFSET - Define OffSetS ceeececccscscescccsscsssscesses 3=3
ORG -~ Absolute Origin seeeececscecesscccsccssscsssssseses 3=4
SECTION — Relocatable Program SectiOn eseesecssesssesss 3-4
SYMBOL DEFINITION 0 0 00 00 C0LOCPICEPQCEEOENINONOINOIONOIOIEOOPIOIOIOIEOIOOOIOTOTEOETTDT 3-4
EQU ~ Equate SymbOl ValU€ eeecesecocssscoscsssssonssse 3=5
FEQU - Equate Floating-Point Symbol Value
(MC68881 ONlY) eessseccsesssccccscssccccscssscssoses 3=5

e ¢ o o o
e o o ¢ o o
AU WD

.
N -

WWWWwWwWwbwwwww
L]
WWwWwihNhhddNDDDNDNDND

3.3.3 REG - Define Register LiSt seeeeececsccescccscsessccsss 3=5
3.3.4 SET - Set Symbol Value S 0S5 000000000 00006000000000000000 3-5
3.4 DATA DEFINITION/STORAGE ALLOCATION seeeevscesscscsnscases 3=0
3.4.1 COMLINE — Command LiNE ceceeeesceccsscssssssscssssccsss 3=6
3.4.2 DC - Define Constant ..ecesseescecsscccsscessccsscsacas 3=6
3.4.2.1 Examples Of ASCII StringS eeseseccscccccsccscsssssces 3=7
3.4.2.2 Examples of Numeric ConstantsS seeecessssccessossssees 3=7
3.4.3 DCB - Define Constant BlOCK esseecscessscsscsccscscses 3-8
3.4.4 DS ~ Define StOrage ecesescccscesssssevessssccsonsssses 3-8
3.5 LISTING CONTROL AND OUTPUT OPTIONS eceosvcccsccscsscaces 3=9
3.5.1 FAIL - Programmer Generated ErYOY seeeecessesscscccces 3=9
3.5.2 FOPT - Floating-Point Assembler Options

MC68020MC68881 only) @ 0 O 0 5000090000000 08 00000000000 3—9

3.5.3 FORMAT - Format The Source Listing seecececccesscsses 3-10
3.5.4 NOFORMAT - Do Not Format the Source Listing ..eeesee 3-10
3.5.5 LIST The Assembly 9090000000000 000000000000000000000 3‘10
3.5.6 NOLIST - Do Not List The ASSEMblY seeesescccceccsssss 3-10
3.5.7 LLEN - Line Length sceeececescescsccascesscsossonsss 3—11
3.5.8 NOOBJ - NO ObjeCt ecececccccsosccsccescasccncceasasss 3-11
3.5.9 OPT - Assembler Output OptionS seeececcscccccscseses 3-11
3.5.10 PAGE = TOp Of PAQg€ seeceeccssccccsssscscocsessscnsss 3—13
3.5.11 NOPAGE -~ Do Not Page Source OUtPUt eesessececsesssss 3—13
3.5.12 SPC - Space Between Source LineSS eseeecscessescsesss 3-13
3.5.13 TTL — Title cesceccsccccccesssnscscrsssossscossecnsss 3-13
3.6 LINKAGE EDITOR CONTROL tecceeveccccsosscccsssscccssssesse 3—14
3.6.1 IDNT - Relocatable Identification Record eeececesssses 3-14
3.6.2 XDEF - External Symbol Definition sseeceseecsseceescessse 3-14
3.6.3 XREF -~ External Symbol ReferenCe seceececssccscscsseses 3-14

iii

TABLE OF CONTENTS (cont'd)
Page

CHAPTER 4 INVOKING THE ASSEMBLER

INTRODUCTION ceeececccccccscsccosssscscsscsscssccssssssssssesae A=l
VERSAJAOS ENVIRONMENT e eecececsceccscsossscccsscsccssnsenses 4=1
Comand Line FOXMAt.eeeesecsssssscessssssocssssscsessases 4-1
Symbol Table Size OptiON ceseeseccccssessssssccssscsnsss 4=2
Microprocessor Type OPtiON eseesssccececcsscscessccscscecnss 4=3
SYSTEM V/68 ENVIRONMENT +eecescscscessocsscssssssoscssssss 4=3
Command Line FOXMAL eeeeesecssscsscescscsssocacssccscnsss 4=3
ASSEMBLER OUTPUT e eecscccossscsesescascsscsncsasscsscscccncssacns 4=4
ASSEMBLER RUNTIME ERRORS scccecocccscccsccsscscccscsccssonse 4-=4

.
o o
w N~

.
=~

L o

.

U WWdNDNDNDND -

CHAPTER 5 MACRO OPERATIONS AND CONDITIONAL ASSEMBLY

INTRODUCTION 4eeeeessccecnccscscococasosncscsssssansnsssesse D=l
MACRO OPERATIONS cececsccescscacscccasosessscsoscsssscosnsaas D=l
Macro Definition ceeeeeescsscesccesssscssessesssssessssse H=2
Macro INVOCALION seeoesessscsscosasssscsssssssesasscseces D=2
Macro Parameter Definition and USE€ eeevecsccccccscscncse 5=2
Labels within MaCroOS sceesecccssscssscesscesscosssasssses H=3
The MEXIT Dir€CtivVe seesscsccveccsssccscssosssccsscsssses D=4
NARG SYMDOL cevevecsosscocsccsococsscssassscecnncsancnces 5eid
Implementation of Macro Definition seeeeeeccsecescesssses 5=5
Implementation of Macro EXpansSion ceseececceccecccccccccceaecs 5H=6
CONDITIONAL ASSEMBLY seceeccsscccssssorosscsssssavsncsascsonnes D=7
Conditional Assembly StruCtUre seeeesccesscssseosscesses 5=7
Example of Macro and Conditional Assembly Usage ceseseses 5-8

L] L] . [. L[]
* . .

« o o o o
¢ o e o o
O JO U bW

(G2 NG G, N, S, RO, RN, O, NS, RO, IO IO,)
.
WwWwidNhNNDNDDNDDNDDNDDNDND

.
[\

CHAPTER 6 STRUCTURED CONTROL STATEMENTS

INTRODUCTION ® 00000 00P O PO PNSOLO OO PDOE NP EPISOOEPNOEEOESENENOIESIPOENINDINLLES
KEYWORD SYMBO[S ® 0000000000000 0000P0000000000000000000000

WWwWwwwwd -

SYNTAX © 0 0000000000000 0000000000000P0ss000ORRIOIOOIOLOIOIOIENPROIOIEOITS

6-1
6-1
6-1
1 IF Statefnent P9 006000000000 0000 00000000000 000000000000000 6-3
2 FOR Statement ceeeseeesccscccscscsocscsssscsssccsssscsscess 60-3
3 REPEAT Statement @0 05 000 PO OO SO0 OO OO OO LCOOOISINOOEBSIOEOINPOSEOSNPOSESINTISPSEES 6 4
4 WHILE Statanent G0 0000000000 POLOTOCNOESIEENINOSIEOEOSIOSOOIOEIOIEINSINPOENOIOSITISIDS 6 4
5 (MC68020/MC68881 only) Floating-Point Structured
Assembler SYNtaX eeeeccossscscccccscscssccsssccscssssse 60=5
SIMPLE AND COMPOUND EXPRESSIONS ccesssceccescscscsccscnssescsese 0=0
Simple EXPreSSIiONS cececsecsscccevscsssssssesscsssscccsses 6-6
.1 Cordition Code EXPreSSiONS ceseessscscocscccsesccssscse 6=0
o2 Operand Comparison EXPreSSiONS seeeecccccsccescscccses 6=7
Compound EXPreSSiONS seeeseeessssccessessessesssssssesaes 6=8
SOURCE LINE FOMATTING 0 050000 PSR IPNPOOIPLEPNSIOEOIESINOOEOOENTISIES 6‘9
1 Class 1 SymbOl USBJE eeeseosssosossocsssssscessssssscsss 60=9
2 Limited Free-Formatting seececessecesceccsscesscscesnceas 6=9
3
4

AN
e o o o o o o

Nesting of Structured Statements ceesescescsccssesscsnes 6-10
ASSeIIIblY Listing Fomat ® O 0000 000G 0P POOOL OISO OSOOCOIEOESESTIOSOES 6-]—0
EE‘FEETS ON THE USER ' S ENVI RONmN‘II ® 60 0 0000000000000 0N 6-10

AN
s ¢ o ¢ o & o v 9 @

A UT U UTUI U b oD DD

iv

CHAPTER 7

~N N
L]
w N+

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

APPENDIX E

TABLE 2-1.
2-‘2.

2-3.
2-4.
2-5.
2-6.
2-7.
2-8.

2-9.
2-10.
2-11.
3-1.
4-1.
6-1.

TABLE OF CONTENTS (cont'd)

GENERATING POSITION INDEPENDENT CODE

FORCING POSITION INDEPENDENCE ccececccacesccccccoscsccsccccsse

BASE-DISPLACEMENT ADDRESSING ccecceccccccccscccsccscsanses

BASE-DISPLACEMENT IN CONJUNCTION WITH FORCED POSITION
INDEPENDENCE ¢ eseessccccscccccssscscssasesscsssasssccscsans

INSTRUCTION SET SUMMARY seeeecccscccccsscscscscssoscscsconcca
CHARACTER SET ceccececocscecccscacscscscoscscascsosscscssccsesasscs
SAMPLE ASSEMBLER OUTPUT tecccececcccaccceccsscsccsacsccsssasce
EXAMPLE OF LINKED ASSEMBLY-LANGUAGE PROGRAMS

UNDER VERSAJOS seessasccscscsscssossanscsssssassssscscce
ASSEMBLY ERROR CODES cseeeececcsccscsssccsscsscscsscscscsscsse

LIST OF TABLES

AJAresSS MOJES ceeeseccssocsccccssesanssssssasasssssssnnans
Cross-Reference: Effective Addressing Mode, Given Operand

Format and <eXPr> TYPE ececscsccscsscsccscssssssssssasee
Special AJAress RANGES seeeesessscsccsssssscssssnsssasanss
AJAressing SUMMAYY seecesccccscossscscsscssccsccsssssonses
Operand ReSOLULION ceeeesescscssscscsccsscscssscssssccasas
Known Location of Operand & Instruction Follows SECTION ..
Known Location of Operand & Instruction FOllowsS ORG eeceee
Unknown Location of Operand & Instruction Follows

SECTION O ORG ceecssveccesssececccocsscscsscsccancsncscesce
External Reference & Instruction FollowsS SECTION ceececcces
External Reference & Instruction FOllowS ORG eeeesccscccsce
MC68881 Specific Floating-Point Condition Codes (fpcc) ...
M68000 Family Assembler DireCtiVES ceeesecccsccscscccsscss
Standard Listing FOXmMat seceessssccecsccsssccsscesccesncans
Effective Addressing Modes for Compare Instructions

v/vi

Page

CHAPTER 1

GENERAL INFORMATION

1.1 SCOPE

The intent of this publication is to provide sufficient information to develop
M68000 family assembly language programs, which may be run on MC68000-,
MC68010-, or MC68020-based systems. The information herein pertains to the
elements of the assembler. Detailed information pertaining to the MC68000
family of microprocessors is provided in the M68000 16/32-bit Microprocessor
Programmer's Reference Manual. It is assumed that the designer has a complete
understanding of the microprocessor architecture before attempting software
development.

Chapters 1 through 4 contain the basic features of the assembler needed by the
beginning assembly language programmer. Chapter 4 also provides instructions to
invoke the assembler. Advanced topics, such as macro operations, conditional
assembly, and structured syntax, are described in Chapters 5 through 8.

1.2 INTRODUCTION

The M68000 Family Resident Structured Assembler (referred to as the "assembler"
throughout this manual) is used to translate M68000 family assembler source
programs into MC68000/MC68010/MC68020 machine language. The assembler executes
under VERSAdos on the EXORmacs Development System, the VERSAmodule 01, 02, or 03
Monoboard Microcomputer, the VMC 68/2 Microcomputer System, the VME/10
Microcomputer System, VMEmodule Monoboard Microcomputer (MVME10l or MVMEL1l0), or
under SYSTEM V/68 on the EXORmacs Development System or the VME/10 Microcomputer
System,

The assembler includes the following features:

. Bbsolute/relocatable code generation

. Complex expressions

. Symbol table listing

. Macros

. Conditional assembly

. Structured syntax

. Cross-reference

. IEEE Standard floating-point data types (MC68881 only)

1.3 M68000 FAMILY ASSEMBLY LANGUAGE

The symbolic language used to code source programs for processing by the
assembler is called assembly language. This language is composed of the
following symbolic elements:

a. Symbolic names or labels, which represent instruction, directive, and
register mnemonics, as well as user-defined memory labels and macros.

b. Numbers, which may be represented in binary, octal, decimal, IEEE
standard floating-point (MC68881 only), or Binary Coded Decimal (BCD)
notation.

c. Arithmetic and 1logical operators, which are employed 1in complex
expressions.

d. Special-purpose characters, which are used to denote certain operand
syntax rules, macro functions, source line fields, and numeric bases.

1.3.1 Machine-Instruction Operation Codes

Appendix A summarizes that part of the assembly language that provides mnemonic
machine~instruction operation codes for the MC68000, MC68010, MC68020, and
MC68881 machine instructions.

1.3.2 Directives

The assembly language contains mnemonics for directives which specify auxiliary
actions to be performed by the assembler. Directives are not always translated
to machine language.

Assembler directives assist the programmer in controlling the assembler output,
in defining data and symbols, and in allocating storage.

1.4 M68000 FAMILY RESIDENT STRUCTURED ASSEMBLER

The assembler translates source statements written in the assembly language into
relocatable or absolute object code, assigns storage locations to instructions
and data, and performs auxiliary assembler actions designated by the programmer.
Object modules produced by the assembler are compatible with the M68000 family
Linkage Editor or the SYSTEM V/68 PAL Linkage Editor, both also referred to as
the "linkage editor" or "linker".

The assembler includes macro and conditional assembly capabilities, and
implements certain "structured" programming control constructs. The assembler
generates object code which may then be linked into a memory image format.

1.4.1 Assembler Purposes
The two basic purposes of the assembler are to:

. Provide the programmer with the means to translate source statements into
object code —-- that is, to the format required by the linkage editor.

. Provide a printed listing containing the source language input, assembler
object code, and additional information (such as error codes, if any)
useful to the programmer.

1.4.2 Assembler Processing

Assembly is a two-pass process. During the first pass, the assembler develops a
symbol table, associating user-defined labels with values and addresses. During
the second pass, the translation from source language to machine language takes
place, using the symbol table developed during pass 1. In pass 2, as each
source line is processed in turn, the assembler denerates appropriate object
code and the assembly listing.

1.4.3 Microprocessor Types

The assembler in its default mode provides assembly of instructions for the
MC68000 processor. However, the assembly of MC68010, MC68020, and MC68881
instructions can be enabled either as a directive in the source text which
precedes instruction mnemonics or from the command line (refer to paragraphs
3.5.2.10 and 4.2.1, respectively).

1.5 RELOCATION AND LINKAGE

"Relocation" refers to the process of bhinding a program to a set of memory
locations at a time other than during the assembly process. For example, if
subroutine "ABC" is to be used by many different programs, it is desirable to
allow the subroutine to reside in any area of memory. One way of repositioning
the subroutine in memory is to change the "ORG" directive operand field at the
beginning of the subroutine, and then to reassemble the routine. A disadvantage
of this method is the expense of reassembling ABC. An alternative to multiple
assemblies is to assemble ABC once. Produced is an object module, which
contains enough information, so that another program (the linkage editor) can
easily assign a new set of memory locations to the module. This scheme offers
these advantages: reassembly 1is not required; the object module is
substantially smaller than the source program; relocation 1is faster than
reassembly, and relocation can be handled by the linkage editor (rather than by
editing the source program and changing the ORG directive).

In addition to program relocation, the linkage editor must also resolve inter-
program references. For example, the other programs that are to use subroutine
ABC must contain a jump-to-subroutine instruction to ABC. However, since ABC is
not assembled at the same time as the calling program, the assembler cannot put
the address of the subroutine into the operand field of the subroutine call.
The linkage editor, however, will know where the calling program resides and,
therefore, can resolve the reference to the call to ABC. This process of
resolving inter-program references is called "linking". an example of linking
two object modules is shown in Appendix D.

1-3

Program sections provide the basis of the relocation and linking scheme. Each
of these sections may also have a variable number of named common sections
associated with it, with each common section having a unique name. These
relocatable sections are passed on to the linkage editor. From the different
modules that are to be linked, the linkage editor collects all sections with the
same number. Each of the 16 relocatable sections may contain data and/or code;
in addition, named common sections may be defined within any relocatable
section.

Absolute sections are unnumbered (and, therefore, unlimited in number); they are
specified by the ORG directive,

1.6 LINKER RESTRICTIONS

Before developing relocatable assembly language modules, the user should become
familiar with the capabilities and restrictions of the linkage process, as
outlined in the M68000 Family Linkage Editor User's Manual or the SYSTEM V/68
PAL Linkage Editor User's Mamual. It is important to keep in mind that the
relocation features of the assembler are directly attributable to capabilities
of the linkage editor, and that the linkage environment can be controlled
through assembler directives. If the assembly language object program is to be
linked with a Pascal object program, the user should be aware of Pascal's
requirements before allocation.

The assembler will produce an cobject module compatible with the linkage editor.
XDEF and XREF must be used to define entry points into the various modules and
external symbols appearing in the module.

1.7 NOTATION

Commards and other input/output (I/0) are presented in this manual in a modified
Backus-Naur Form (BNF) syntax. Certain symbols in the syntax, where noted, are
used in the real I/0; however, others are meta-symbols whose usage is restricted
to the syntactic structure. These meta-symbols and their meanings are as
follows:

<> The angular brackets enclose a symbol, known as a syntactic
variable, that is replaced in a command line by one of a class of
symbols it represents., In some cases, where noted, angular
brackets are required characters.

| This symbol indicates that a choice is to be made. One of several
symbols, separated by this symbol, should be selected.

[] Square brackets enclose a symbol that is optional. The enclosed
symbol may occur zero or one time. In some cases, where noted,
square brackets are required characters.

[J... Square brackets followed by periods enclose a symbol that is
optional/repetitive. The symbol may appear zero or more times.

Operator entries are to be followed by a carriage return.

1.8 RELATED PUBLICATIONS

The user should be familiar with the following Motorola publications, as
approprlate to system type.
EXORmacs Development System Operations Manual (M68KMACS)
VME/10 Microcomputer System Overview Manual (M68KVSOM)
VMC 68/2 Series Microcomputer System Manual (MVMCSM)
VERSAdos to VME Hardware and Software Configuration User's Manual (MVMEVDOS)
VERSAdos to VMEmodules Hardware and Software Configuration Manual (MVMECNFGL)
M68000 16/32-Bit Microprocessor Programmer's Reference Manual (M68000UM)
M68000 Family Linkage Editor User's Manual (M68SKLINK)
M68000 Family Resident Pascal User's Manual (M68KPASC)
VERSAdos Messages Reference Manual (M68KVMSG)
VERSAdos System Facilities Reference Manual (M68KVSF)
SYSTEM V/68 Error Message Manual (M6SKUNMSG)
SYSTEM V/68 PAL Linkage Editor User's Manual (M68KUNLNK)
SYSTEM V/68 Pascal Compiler User's Manual (M68KUNPAS)
SYSTEM V/68 User's Manual (M68KUNUM)

1-5/1-6

CHAPTER 2

SOURCE PROGRAM CODING

2.1 INTRODUCTION

A source program is a sequence of source statements arranged in a logical way to
perform a predetermined task. Each source statement occupies a line of
printable text, where each line may be one of the following:

a., Comment

b. Executable instruction
c. Assembler directive

d. Macro invocation

NOTE

The MC68020 assemblers running under VERSAdos or SYSTEM V/68
and the MC68000/MC68010 assembler running under SYSTEM V/68
are case-~insensitive to source input except as noted under
the INCLUDE directive or for ASCII strings. All instruction
examples in this manual are in uppercase letters, excluding
explanations.

2.2 COMMENTS

Comments are strings, composed of any ASCII characters (refer to Appendix B),
which are inserted into a program to identify or clarify the individual
statements or program flow. Comments are included in the assembly listing but
are ignored by the assembler.

A comment may be inserted in one of two ways:

a. At the beginning of a line, starting in column one, where an asterisk (¥*)
is the first character in the line. The entire line is a comment, and an
instruction or directive in this line will not be recognized.

b, Following the operation and operand fields of an assembler instruction or
directive, where it is preceded by at least one space (refer to paragraph
2.4.4).

Examples:

* THIS ENTIRE LINE IS A COMMENT.

BRA LAB2 THIS COMMENT FOLLOWS AN INSTRUCTION.

2.3 EXECUTABLE INSTRUCTION FORMAT

Assembly language programs are translated by the assembler into object code that
may contain executable instructions, data structures, and relocation
information. This translation process begins with symbolic assembly language
source code, which employs reserved mnemonics, special symbols, and user-defined
labels. M68000 family assembly language is line-oriented.

2-1

2.4 SOURCE LINE FORMAT

Bach source statement has an overall format that is some combination of the
following four fields:

a. label

b. operation
c. operand
d. comment

The statement lines in the source file must not be numbered. The assembler,
however, prefixes each line in the listing file with a sequential number, up to
four decimal digits.

The format of each line of source code is described in the following paragraphs.

2.4.1 Label Field

The label field is the first field in the source line. A label which begins in
the first column of the line may be terminated by either a space or a colon. A
label may be preceded by one or more spaces, provided it is then terminated by a
colon., In either case, the colon is not a part of the label.

Labels are allowed on all instructions and assembler directives which define
data structures. For such operations, the label is defined with a value equal
to the location counter for the instruction or directive, including a
designation for the program section in which the definition appears.

Labels are required on the assembler directives which define symbol values (SET,
EQU, REG). For these directives, the label is defined with a value (and for SET
and EQU, a program section designation) corresponding to the expression in the
operand field.

Labels on MACRO definitions are saved as the mnemonic by which that macro is
subsequently invoked. No memory address is associated with such labels. A
label is also required on the IDNT directive. This label is passed on to the
relocatable object module; it has no associated internal value.

No other directives allow labels.

Labels which are the only field in the source line, are defined equal to the
current location counter value and program section.

2.4.2 Operation Field

The operation field follows the label field and is separated from it by at least
one space. Entries in the field fall under one of the following categories:

a. Instruction mnemonics - which correspond to the M68000 family processor
instruction set.

b. Directive mnemonics - pseudo-operation codes for controlling the assembly
process.

c. Macro calls - invocations of previously-described macros.

2-2

The size of the data field affected by an instruction is determined by the data
size code. Some instructions and directives can operate on more than one data

size.

For these operations, the data size code must be specified or a default

size is assumed. The size code need not be specified if only one data size is
permitted by the operation. The data size code is specified by appending a
period (.) to the operation field, followed by B, W, L, S, D, X, or P where:

B =

W =

Byte (8-bit data)

Word (16-bit data)

Longword (32-bit data)

Byte (8-bit offset for certain branch instructions)

Single precision binary real (IEEE Standard, 32-bit: 8-bit exponent,
23-bit mantissa, l-bit sign) (MC68881 only)

Double precision binary real (IEEE Standard, 64-bit: 1l1-bit exponent,
52-bit mantissa, l-bit sign) (MC68881 only)

Extended precision binary real (96-bit: 15-bit exponent, 64-bit
mantissa, 1-bit sign) (MC68881 only), (l6-bits are reserved)

Packed Binary Coded Decimal (BCD) real string (96-bit: 3-decimal digit
exponent and l7-decimal digit mantissa) (MC68881 only)

The data size code is not permitted, however, when the instruction or directive
does not have a data size attribute.

Examples (legal):

LFA 2(A0) ,Al Longword size is assumed (.B, .W not allowed); this
instruction loads effective address pointed to by A0,
+2 into Al.

ADD,B ADDR, DO This instruction adds byte whose address is ADDR to low
order byte in DO.

ADD D1,D2 This instruction adds low order word of D1 to low order
word of D2. (W is the default size code.)

ADD.L A3,D3 This instruction adds entire 32-bit (longword) contents
of A3 to D3.

Example (illegal):
SUBA.B #5,Al Illegal size specification (.B not allowed on SUBA).

This instruction attempts to subtract the value 5 from
the low order byte of Al; byte operations on address
registers are not allowed.

2-3

2.4.3 Operand Field

If present, the operand field follows the operation field and is separated from
the operation field by at least one space. When two or more operand subfields
appear within a statement, they must be separated by a comma but may not contain
embedded spaces; e.g., D1, D2 is illegal. In an instruction like 'ADD D1,D2',
the first subfield (D1) is generally applied to the second subfield (D2) and the
results placed in the second subfield. Thus, the contents of D1 are added to
the contents of D2; the result is saved in register D2. In the instruction
'MOVE D1,D2', the first subfield (Dl) is the sending field; the second subfield
(D2) is the receiving field. In other words, for most two-operand
instructions, the general format 'opcode source,destination' applies.

2.4.4 Comment Field

The last field of a source statement is an optional comment field. This field
is ignored by the assembler except for being included in the listing. The
comment field is separated from the operand field (or the operation field, if
there is no operand) by one or more spaces and may consist of any ASCII
characters. This field is important in documenting the operation of a program.

2.5 ADDRESSING MODES

Effective address modes, combined with operation codes, define the particular
function to be performed by a given instruction. Effective addresses and data
organization are described in detail in Section 2, "Data Organization and
Addressing Capabilities", of the M68000 16/32-Bit Microprocessor Programmer's
Reference Manual.

References to data addresses may be odd only if a byte is referenced. Data
references involving words or longwords must be even. Likewise, instructions
must begin on an even byte boundary.

Individual bits within a byte (operand for memory destinations) or longwords
(operands for Data register destinations) may be addressed with the bit
manipulation instructions (paragraph 2.10.6). Bits for a byte are numbered 7 to
0, with 7 being the most significant bit position and 0 the least significant.
Bits for a word are numbered 15 to 0, with 15 being the most significant bit and
0 the least significant. Bits for a longword are numbered from 31 to 0, with 31
being the most significant bit position and 0 the least significant bit
position.

The code generated in the listing file for some addresses may be the same as the
code generated for different expressions whenever externally referenced symbols
are involved. The object file contains the correctly resolved addresses.

Following are definitions of the symbols used in Tables 2-1 and 2-2 and
throughout the remainder of this section:

An Address register number "n" (0-7).

ZAn (MC68020 only) Suppressed address register number "n" (0-7)
whose value is taken to be zero. Can be used in place of An if
suppression is desired.

Dn Data register number "n" (0-7).

Ri (MC68020 only) Index register number "i"; may be any address
(An) or data (Dn) register with optional ".W" or ".L" size
designation (16 vs 32 bits). Scaling factor "scl" may also
exist.

2-4

ZRi

scl

ZpC

B,W,L

d (An)
d(An,Ri)
d(PC)
d(PC,Ri)
<absolute>
<simple>
<complex>

bd

od

<ea>
<iea>

null

Omitted
values

Grouping
characters

Order

(MC68020 only)
value is taken to be =zero.
suppression is desired.

Suppressed index register number "i" (0-7) whose
Can be used in place of Ri if

(MC68020 only)
indexing modes.

Scaling factor of 1, 2, 4, 8 optionally used in
The default is 1.

Program counter.,
(MC68020 only)

to be =zero.
desired.

Suppressed program counter whose value is taken
Can be used in place of PC if suppression is
Byte, word, longword data sizes.

Address register indirect with displacement (4).
Address register indirect with index (Ri) plus displacement (d4).

Program counter with displacement (d).

Program counter with index (Ri) plus displacement (d).
Absolute expression.

Simple relocatable expression.,

Complex relocatable expression.

(MC68020 only)
indirection occurs.

Base displacement that is added before

(MC68020 only) Outer displacement that 1is added after
indirection occurs. Displacement size may be either word or
longword.

Effective address expression.
Indirect effective address expression.,

(MC68020 only) Null displacements imply that no extension word
is present in the instruction for displacement.

(MC68020 only) Omitted registers take on suppressed register
values (taken to be zero).

Omitted displacements take on null values (taken to be zero).
(MC68020 only)

[1 enclose an
characters.

indirect expression and are required

() enclose the entire <ea> expression and are required
characters.

(MC68020 only) Addressing arguments may occur in any order
within the grouping characters. When two registers appear in an
<ea> expression, if the leftmost could be either An or Ri, then
a base register An is assumed for the leftmost, and the second
is taken as an index register Ri.

2-5

Table 2-1 summarizes the addressing modes defined for the M68000 family, their
invocations, and significant constraints.

TABLE 2-1. Address Modes
MODE INVOCATION COMMENTS
1) Register direct An
Dn
2) Memory address
a) Simple indirect (An)
b) Predecrement - (An)
¢) Postincrement (An) +
d) Indirect with <absolute> (An)
displacement (l6-bit) <complex> (An)
e) Indirect with index <absolute> (An,Ri) Due to linker con-
(16— or 32-bit) plus straints, any odd-
displacement (8-bit) addressed labels, used
with externally defined
labels, will generate a
"break to odd address"
error.
f) Indirect with ([bd,An,Ri{*scl}],od)
preindexing plus base
and outer displacements
(MC68020 only)
g) Indirect with ([bd,An] ,Ri{*scl},od)
postindexing plus base
and outer displacements
(MC68020 only)
h) Direct with indexing (bd,An,Ri{*scl})
plus base displacement
(MC68020 only)
3) Special address
a) PC with <{simple> Expression is an address
displacement (16-bit) (not a displacement)
which must be backward,
within current relocat-
able section.
<absolute)> (PC) Forced PC-relative. Must
<simple> (PC) fit within 16-bit signed
<complex> (PC) field; resolved at

2-6

assembly or link time.

TABLE 2-1. Address Modes (cont'd)
MODE INVOCATION COMMENTS
<absolute> (PC) Forced PC-relative. Must
<simple> (PC) fit within 16-bit signed
<complex> (PC) field; resolved at

b) PC with index
(16~ or 32-bit) plus
displacement (8-bit)

c) PC with preindexing
plus base and
outer displacements
(MC68020 only)

d) PC with postindexing
plus base and outer
displacements
(MC68020 only)

e) PC direct with
indexing plus base
(MC68020 only)

f) Absolute
(16- or 32-bit)

g) Immediate (8-, 16-,
or 32-bit)

<simple> (Ri)

<absolute) (PC,Ri)
<simple> (PC,Ri)

([bd,PC,Ri{*scl}] ,od)

([bd,PC] ,Ri{*scl}],od)

(bd,PC,Ri{*scl})

<absolute>
<complex>
<simple>

#<absolute>
#<simple>
#<complex>

assembly or link time.

Expression is an address
which must be backward,
within current relocat-
able section. Also, due
to linker constraints,
any odd-addressed
labels, used with exter=-
nally defined labels,
will generate a "break
to odd address" error.

Forced PC-relative;
expression must be
within current
program section.

Expression must be
forward reference or
not in current program
section.

Due to linker con-
straints, any odd-
addressed labels, used
with externally defined
labels, will generate a
"break to odd address"
error,

TABLE 2-1. Address Modes (cont'd)

MODE INVOCATION COMMENTS
4) Implicit PC Invoked by conditional
reference branch (Bcc) or DBcc

instruction; the effec-
tive address is a dis-
placement from the PC;
the displacement is
either 8, 16, or 32 bits
(32 on MC68020 only),
depending on OPT BRS,
OPT BRB, OPT BRW, and
OPT BRL, and whether
these options are over-
ridden on the current
instruction (see para-
graph 2.6). Also, due
to linker constraints,
any odd-addressed
labels, used with exter-
nally defined labels,
will generate a “break
to odd address" error.

Table 2-2 provides a cross reference of operand formats and addressing modes.
Given an operand of the format shown in the first column, the other columns show
which addressing mode is indicated, depending on whether the expression is
absolute, simple relocatable, or complex relocatable.

TABLE 2-2, Cross-Reference: Effective Addressing Mode, Given
Operand Format and <expr> Type

EFFECTIVE ADDRESSING MODE

ABSOLUTE SIMPLE RELOCATABLE COMPLEX RELOCATABLE
OPERAND FORMAT {expr> <expr> <{expr>
<expr> (An) d (An) d (An) d (An)
<expr> (Dn) invalid d(PC,Dn) * invalid
<expr> (An,Ri) d(An,Ri) invalid invalid
<expr> absolute (W,L) d(pPC) or absolute (W,L)
absolute (W,L)
<expr> (FC) d(pC) d (pC) d (eC)
<expr> (PC,Ri) d(PC,Ri) * d(PC,Ri) * invalid
#<expr> immediate (B,W, L) immediate (W,L) immediate (W,L)

* Must be within current program section.

2-8

2.5.1 Register Direct Modes

These effective addressing modes specify that the operand is in one of the 16
multifunction registers (eight data and eight address registers). The operation
is performed directly on the actual contents of the register.

Notations: An 4 e n is between 0 and 7

Dn
Examples: CLR.L D1 Clear all 32 bits of D1.
ADD Al,A2 Ad low order word of Al to low order

word of A2,

2.5.2 Memory Address

The following effective addressing modes specify that the operand is in memory
and provide the specific address of the operand.

2.5.2.1 Address Register Indirect. The address of the operand is in the
address register specified by the register field.

Notation: (An)

Examples: MOVE #5, (AD) Move value 5 to word whose address is
contained in A5.

SUB.L (Al) ,DO Subtract from DO the value in the long
word whose address is contained in Al.

2.5.2.2 Address Register Indirect with Postincrement. The address of the
operand is in the address register specified by the register field. After the
operand address is used, it is incremented by one, two, or four, depending upon
whether the size of the operand is byte (.B), word (.W), or long (.L).

Notation: (An) +

Examples: MOVE.B (A2)+,D2 Move byte whose address is in A2 to low
order byte of D2; increment A2 by 1.

MOVE.L (A4)+,D3 Move longword whose address is in A4 to
D3; increment Ad by 4.

2-9

2.5.2.3 Address Register Indirect with Predecrement. The address of the
operand is in the address register specified by the register field. Before the
operand address is used, it is decremented by one, two, or four, depending upon
whether the operand size is byte (.B), word (.W), or long (.L).

Notation: ~(An)

Examples: CLR -(A2) Subtract 2 from A2; clear word whose
address is now in A2.
CMP.L -(a0) ,D0 Subtract 4 from AQ0; compare longword
whose address is now in AQ with contents
of DO.

2.5.2.4 Address Register Indirect with Displacement. The address of the
operand is the sum of the address in the address register and the sign-extended
displacement.

Notation: d(an)

Examples: AVAL, EQU 5 AVAL is equated to 5 (for use in next
instruction).

CLR.B AVAL(A0) Clear byte whose address is given by
adding value of AVAL (=5) to contents
of AO.

MOVE #2,10(A2) Move value 2 to word whose address is

given by adding 10 to contents of A2.

2.5.2.5 Address Register Indirect with Index. The address of the operand is
the sum of the address in the address register, the sign-extended displacement,
and the contents of the index (A or D) register.

Notations: d(&n,Ri) Specifies low order word of index register.
d(An,Ri.W)
d(An,Ri.L) Specifies entire contents of index register.

Examples: ADD AVAL(Al,D2) ,D5 Add to low order word of D5 the word
whose address 1is given by addition of
contents of Al, the low order word of
index register (D2), and the displacement
(AVAL) .

MOVE.L D5,$20(A2,A3.L) Move entire contents of D5 to longword
whose address is given by addition of
contents of A2, contents of entire index
register (A3), and the displacement

($20) .

2-10

2.5.2.6 Address Register Indirect with Preindexing Plus Base and Outer
Displacements. (MC68020 only) The address of the operand is the sum of the
<iea> and a sign-extended outer displacement value od. <iea> is the sum of the
contents of the address register An (or ZAn), the base displacement bd, and the
contents of the index register Ri (or ZRi). Therefore,

bd + (An) + Ri —--=> <iea>
(Kiea>) + od --=> <operand>
Notation: ([bd,An,Ri{*scl}],od) or
([bd,An,Ri.W{*scl}],od) Specifies low-order word of index
register Ri.

([bd,An,Ri.L{*scl}],od) Specifies entire contents of index
register Ri.

Examples: ADD ([BASE,Al,D2},AVAL),D5 The sumn of the value of BASE,
the contents of base register
Al, and the contents of the
low-order word of index
register D2 points to <iea>.
The contents of the resultant
address <iea> added to the
value of AVAL give the <ea> of
the operand to be added to the
contents of D5.

AapDb ([2,Al,A2],4),D5 In this example, the assembler

selects the leftmost A register
(Al) to be the base register.

2-11

2.5.2.7 Address Register Indirect with Postindexing Plus Base and Outer
Displacements. (MC68020 only) The address of the operand 1s the sum of the
<iea>, the contents of the index register Ri (or ZRi), and the outer
displacement value od. <iea> is the sum of the base displacement bd and the
contents of the base register An (or ZAn). Therefore,

bd + (An) -—--=> <iea>
(<iea>) + od + Ri ---> <operand>

Notation: ([bd,An],od,Ri{*scl}) or
([bd,An] ,od,Ri.W{*scl}) Specifies low-order word of index
register Ri.

([bd,An] ,od,Ri.L{*scl}) Specifies entire contents of index
register Ri,

Example: ADD ([BASE,Al] ,AVAL,D2) ,D5 The sum of the value of BASE
and the contents of base
register Al points to <iead>.
The contents of the resultant
address <iea> added to the
value of AVAL and the
low-order word of index
register D2 points to the
address of the operand to be
added to the contents of D5.

2-12

2.5.2.8 Address Register Direct with Indexing Plus Base Displacement.
(MC68020 only) The address of the operand is the sum of the 8-bit base
displacement bd, the contents of the base register an, and the contents of the
index register Ri. Therefore,

bd + (An) + (Ri) --=> <operand>

Notation: (bd,An,Ri{*scl}) or
(bd,An,Ri.W{*scl}) Specifies low-order word of index
register Ri.

(bd,An,Ri.L{*scl}) Specifies entire contents of index
register Ri.

Example: ADD (BASE,Al,D2) ,D5 The sum of the value of BASE,
the contents of base register
Al, and the low-order word of
index register D2 points to the
address of the operand to be
added to the contents of D5,

ADD (BASE,Al,A2) ,D5 In this example, Al is the base
register because it 1is the
leftmost candidate for base
register. A2 is interpreted as
being an index register.

2-13

2.5.3 Special Address Modes
Special address modes use the effective address register field to specify the

special addressing mode instead of a register number. Table 2-3 provides the
ranges for absolute short and long addresses.

TABLE 2-3. Special Address Ranges

32-BIT ADDRESS 16-BIT REPRESENTATION OF 32-BIT ADDRESS
00000000 0000

. . Absolute short
00007FFF 7FFF
00008000

. (No representation in 16 bits;

. must be absolute long)
FFFF7FFF
FFFF8000 8000

. . Absolute short
FFFFFFFF FEFF

2.5.3.1 Absolute Short Address. The 16-bit address of the operand is sign
extended before it is used. Therefore, the useful address range is 0 through
STFFF and SFFFEF8000 through SFFFFFFEF.

Notation: XXX
Example: JMP $400 Jump to hex address 400
(MC68020 only) An absolute short address can be forced by using the notation:

(XXX) W

2.5.3.2 BAbsolute Long Address - The address of the operand is the 32-bit value
specified.

Notation: XXX
Example: JMP $12000 Jump to hex address 12000
(MC68020 only) An absolute long address can be forced by using the notation:

(XXX) . L

2-14

2.5.3.3 Program Counter with Displacement. The address of the operand is the

sum of the address in the program counter and the sign-extended displacement
integer. The assembler calculates this sign-extended displacement by subtracting
the address of displacement word from the value of the operand field.

Notation: <expression> (PC)

Example: JMP TAG(PC)

2.5.3.4 Program Counter with Index.

Forced program counter-relative, Note
that <expression> is interpreted as
a program address rather than a dis-
placement.,

Force the jump to address TAG to bhe
program counter-relative,

The address is the sum of the address in

the program counter, the sign-extended displacement value, and the contents of

the index (A or D) register.

Notations: <expressiond (Ri.W)

Kexpression> (Ri.L)

<expression> (PC,Ri)

Examples: MOVE T(D2) ,TABLE
JMP TABLE(A2.W)
JMP TAG(PC,A2.W)

Specifies low order word of index
register. W is optional (default).

Specifies entire contents of index
register,

Forced program counter-relative. Ri.W
or Ri.L legal. NOTE: <expression> is
interpreted as a program address rather
than a displacement.

Moves word at location (T plus contents
of D2) to word location defined by TABLE.
T must be a relocatable symbol.

Transfers control to location defined by
TABLE plus the lower 16-bit content of A2
with sign extension. TABLE must be a
relocatable symbol.

Forces evaluation of TAG to be program
counter-relative with index.

2-15

2.5.3.5 Program Counter with Preindexing Plus Base and Outer Displacements.
(MC68020 only) The address of the operand is the sum of the <iea> and a sign-
extended outer displacement value od. <iea> is the sum of the contents of the
Program Counter PC (or ZPC), the base displacement bd, and the contents of the
index register Ri (or ZRi). Therefore

bd + (PC) + Ri ——=> <iea>
(K<iea>) + od --=> <operand>
NOTE

Whenever ZPC is used, bd is not offset by the cur-
rent PC value. od is never offset by the PC value.

Notation: ([bd,PC,Ri{*scl}],od) or
(Ibd,PC,Ri .W{*scl}],od) Specifies low-order word of index
register Ri.
([bd,PC,Ri.L{*scl}],od) Specifies entire contents of index
register Ri.
Examples: ADD ([BASE,PC,A2] ,AVAL) ,D5 The sum of the value of

BASE, the contents of the
program counter PC, and the
contents of the low-order
word of index register 2
points to <iea>. The
contents of the resultant
address <iea> added to the
value of AVAL give the <ea>
of the operand to be added
to the contents of D5.

ADD ([A2,PC,BASE] ,AVAL) ,D5 This example is equivalent
to the example above because
ordering of operands is not
required.

2-16

2.5.3.6 Program Counter with Postindexing Plus Base and Outer Displacements.
(MC68020 only) The address of the operand is the sum of the <iea>, the contents
of the index register Ri (or ZRi), and the outer displacement value od. <iea> is
the sum of the base displacement bd and the contents of the program counter PC
(or ZPC). Therefore,

bd + (PC) =--==> <(iea>
(<iea>) + od + Ri ~--=> (operand>

Notes: Whenever ZPC is used, bd is not offset by the current
PC value. od is never offset by the PC value.

Notation: ([bd,PC],od,Ri{*scl}) or
({bd,PC] ,0d,Ri W{*scl}) Specifies low-order word of index
register Ri.

([bd,PC) ,od,Ri.L{*scl}) Specifies entire contents of the
index register Ri.

Example: ADD ({BASE,PC] ,AVAL,D2) ,D5 The sum of the value of BASE
and the contents of program
counter PC points to <iead.
The contents of the
resultant address Kiea>
added to the value of AVAL
and the 1low-order word of
index register D2 points to
the address of the operand
to be added to the contents
of D5.

2-17

2.5.3.7 Program Counter Direct with Indexing Plus Base Displacement. (MC68020
only) The address of the operand 1s the sum of the sign-extended 8-bit base
displacement bd, the contents of the program counter PC, and the contents of the
index register Ri. Therefore,

bd + (PC) + (Ri) -=-=> <operand>

Notation: (bd,PC,Ri{*scl}) or
(d,PC,Ri JW{*scl}) Specifies low-order word of index
register Ri.

(bd,PC,Ri.L{*scl}) Specifies entire contents of the
index register Ri.

Example: ADD (BASE,PC,D2) ,D5 The sum of the value of BASE,
the contents of program
counter PC, and the contents
of the low-order word of D2
points to the address of the
operand to be added to the
contents of D5.

2.5.3.8 Immediate Data. An absolute number may be specified as an operand by
immediately preceding a number or expression with an immediate character. The
immediate character (#) is used to designate an absolute number other than a
displacement or an absolute address.

Notation: #XXX
Examples: MOVE #1,D0 Move value 1 to low order word of DO.

SUB.L #1,D0 Subtract wvalue 1 from the entire
contents of DO.

2-18

2.6 NOTES ON MC68020 ADDRESSING MODES

There are new features in the MC68020 addressing modes. These features are
discussed in the following paragraphs and are summarized in Table 2-4.

2.6.1 Address Register Addressing Modes

One of the main changes to the addressing modes in the MC68020 is in the mode 6
<ea> expressions. Some source code variations of the new mode 6 <ea>
expressions are redundant with the MC68000 modes 2 and 5 (i.e., the final
effective address is the same). When a redundant mode occurs, the mode 2 and 5
forms are selected by the assembler because they are more efficient. For
example, when the assembler sees the following form:

(An)

it will generate a mode 2 addressing mode. Furthermore, the assembler will
generate a mode 5 address when seeing the following two forms:

bd (An) or the new syntax form
{bd,An) when bd fits in 16 bits or less

The programmer can generate the redundant mode 6 instructions by using the
suppressed registers. In the bd (An) form, bd must fit in 16 bits or less or an
error (250) is generated. The (bd, An) form supports a bd up to 32 bits.

It is important to note that the assembler still recognizes the current 68000
syntax for mode 6 addresses. These two forms are:

(An,Ri)
bd (An,Ri) or the new notation (lbd,an,Ri)

They generate mode 6 addresses. However, the object code for the form written
in new notation is different if a scaling factor other than one is present or bd
cannot be represented in 8 bits or less.

Where new addressing modes are redundant with old addressing modes or with other
new addressing modes, the assembler defaults to the more efficient addressing
mode., However, less efficient forms can still be generated.

In general, old addressing modes are more efficient than the new modes. Within
the new modes, pre-indexed indirect is more efficient than post-indexed
indirect, and use of the index register is more efficient than use of the base
address register for indirect modes.

Efficiency as used in this document refers to execution time. In most cases,
the fastest variation is also the shortest one.

In the variation (bd,Ai*scl), the form (bd,Ai) is accepted. However, if the

base displacement is less than or equal to 16 bits, the assembler automatically
selects mode 5.

2-19

2.6.2 Program Counter Relative Addressing Modes

Another major change to the addressing modes in the MC68020 is in the mode 73
forms. Some of the new mode 73 addressing modes are redundant with the MC68000
mode 72. When a redundant mode occurs, the mode 72 form is used since it is more
efficient. For example, when the assembler sees

bd (PC) or the new syntax form
(bd, PC) when bd fits in 16 bits or less

it generates a mode 72 address. The programmer can generate the redundant mode
73 instructions by using suppressed registers.

It is also important to note that the assembler recognizes the current 68000
syntax for mode 73 addresses. These forms are

(PC,Ri) or (PC) or bd(PC,Ri)

All mode 73 <ead> expressions require 'PC' or 'ZPC' as part of the expression to
distinguish them from their address register counterparts. (All mode 72 and 73
references are to program space and all mode 2, 5, and 6 references are to data
space.)

Where new addressing modes are redundant with old addressing modes or with
other new addressing modes, the assembler defaults to the more efficient
addressing mode. However, less efficient forms can still be generated.

When the program counter is suppressed (ZPC), the displacement is assumed to be
absolute and hence is not offset from the current PC value.

2.6.3 Using Suppressed Registers to Force Redundant Addressing Modes

Register mnemonics ZPC, ZA0-ZA7 and ZD0-ZD7 imply registers whose values are
always taken to be zero. These symbols may be used to specify any allowable
register while at the same time suppressing that register during <ea>
calculations. These symbols are included for diagnostic purposes so that every
field of the object code instruction can be specified. It also indicates
whether PC or An is being suppressed, and this determines whether the <ea> is in
instruction space or data space. By default, An is taken to be the suppressad
register if no register is specified. 'ZPC' must appear in the <ea> expression
to force PC-relative addressing with PC suppressed.

Where an <ea> expression would nommally default to a current 68000 addressing
mode, the equivalent <ea> may be forced in mode 6 or 73 by including 'ZRi'
within the <ea> expression. This is because the assembler always selects the
most efficient addressing mode unless another equivalent mode is forced.

'ZRi' following the closing square bracket (i.e., ' ([<ea>],ZRi)') forces
post-indexed indiract modes where the index register has been suppressed.

Registers can be suppressad only in the address register indirect and the
Program Counter indirect modes.

2-20

2.6.4 2Addressing Summary

Table 2-4 summarizes much of the

paragraphs:

TABLE 2-4. Addressing Summary

information presented

in the preceding

DEFAULT ADDRESSING MODE

FUNCTIONALLY EQUIVALENT

FORCED ADDRESSING MODES

SYNTAX MODE SYNTAX MODE

0 Mode 70 (ZRi) Mode 6n w/null bd

0 Mode 70 ((0) .W,2ZR1) Mode 6n w/16-bit bd=0
0 Mode 70 ((Q) JL,ZR1) Mode 6n w/32-bit bd=0
bd Mode 70 (bd,7ZR1) Mode 6n

(An) Mode 2n (An,ZRi1) Mode 6n

bd (An) Mode 5n (bd,An,ZR1) Mode 6n

none (ZPC) Mode 73 w/null bd
none ((0) .W,ZPC) Mode 73 w/16-bit bd=0
none ((0) .L,ZPC) Mode 73 w/32-bit bd=0
none {bd,ZPC) Mode 73

(m Mode 6n w/null bd (1 (D) .W]) Mode 6n w/16-bit bd=0
(rh Mode 6n w/null bd ([(0).L]) Mode 6n w/32-bit bd=0
(o Mode 6n w/pre-ind. (I1,2R1) Mode 6n w/post-ind.
(nH Mode 6n w/supp. An ([Z2PC]) Mode 73 w/supp. PC

NOTE: "n" mode

numbers refer to the base address register.

2-21

2.7 NOTES ON ADDRESSING OPTIONS

By default, the assembler resolves all forward references by using the longer
form of the effective address in the operand reference. The programmer may
override this default by specifying OPT FRS, which designates that forward
absolute references should be short, or OPT BRB (or BRS), designating that
forward relative branches should use the shorter (8-bit) displacement format.
For the MC68020, OPT BRW can be used to force 16-bit (rather than 32-hit)
displacements on forward branches.

On an instruction which does not allow a size code, the current forward
reference default format may be overridden (for that instruction only) by
appending .S (short) or .L (long) to the instruction mnemonic. A similar
override may be performed in the structured syntax control directives via the
extent codes (see paragraph 6.3 for further explanation). No override is
possible on instructions with size code specification. Notably, this override
procedure is possible on the JMP and JSR instructions.

The shorter form of the effective address for relative branch instructions is an
8-bit displacement; the longer format is a 16-bit displacement. For absolute
jumps, the shorter effective address is the 16-bit absolute short; the longer
format is the 32-bit absolute long mode. In the case of forward references in
either relative branches or absolute jumps, if the shorter format is directed
and the longer format is later found necessary when the reference is resolved,
an error will occur.

References to symbols already defined, whether absolute or relative, are
resolved by the assembler into the appropriate effective address, unless .S or
.L is forced on the instruction.

A short form may be forced by following the instruction mnemonic with .S.
Example:

BEQ.S LOOP1 If condition code 'EQ' (equal) is true, then branch to
LOOPL (using the short form of the instruction).

In this case, the instruction size is forced to one word. An error will be
printed if the operand field is not in the range of an 8-bit displacement.

Since 8-bit value fields are not relocated, a Bcc.S instruction, which branches
to an XREF or other expression-required location, is not allowed. Such an
instruction format results in an assembler error. A relative branch to a symbol
known to be an XREF, or in a different section than the instruction, employs the
longer (16-bit) displacement, with resolution done by the linkage editor.

2-22

Default actions of the assembler have been chosen to minimize two common address
mode errors:

a. Displacement range violations

Relative branch instructions (Bcc, BRA, BSR) allow either 8-bit or 16-bit
displacements from the PC. On forward references in such instructions,
the default action is to assume the 16-bit displacement (OPT BRW), which
also allows resolution by the linkage editor, should that prove
necessary.

b. Inappropriate absolute short address

Absolute addresses may be short (16-bit) or long (32-bit). On forward
references with absolute effective address, the default action is to
assume the long format (OPT FRL). The long form is also assumed on
references to another section (unless it is a SECTION.S), so that
resolution by the linkage editor is assured.

Default conditions have been chosen to prevent errors by using addressing
formats which ensure address resolution in the broadest range of conditions, at
the expense of code efficiency. Each default may be overridden to improve
efficiency or to create position independent code. Also, the current address
size defaults (options FRL and FRS) may be overridden in certain cases on
specific instructions which do not allow size codes by appending .S or .L, as in
JMP,.S and JMP,L (JMP and JSR only).

The previous discussion assumed relative branches could not be 32 bits. This is
not the case when using the MC68020.

The resolution of operands into effective address modes (ignoring base register
addressing) is summarized in the Tables 2-5 through 2-10.

TABLE 2-5. Operand Resolution

INSTRUCTION FOLLOWS

OPERAND TYPE SECTION ORG
Known location See Table 2-6 See Table 2-7
(backward in pass 1)

Unknown location See Table 2-8 See Table 2-8
(forward)
External reference See Table 2-9 See Table 2-10

2-23

TABLE 2-6. Known* Location of Operand & Instruction Follows SECTION

OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE

PC relative
(resolved by linkage editor
PCS if operand & instructions are
in different SECTIONSs)

IF displacement > 1l6-bit

THEN error
Simple
relocation
IF operand and instruction
in same SECTION and
NOPCS displacement <= 16-bit
(default) THEN PC relative
ELSE IF operand defined
in SECTION.S
THEN absolute short
ELSE absolute long
(resolved by linkage editor)
Complex
relocation (Any) Absolute long
Absolute Absolute short or absolute
(ORG) (Any) long depending on the value

of the operand

* Label defined before instruction which references it (in pass 1).

2-24

TABLE 2-7. Known* Location of Operand & Instruction Follows ORG

OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
IF operand defined
Simple (Any) in SECTION.S
relocation THEN absolute short
ELSE absolute long
(resolved by linkage editor)
Complex
relocation (Any) Absolute long
IF displacement <= 16-bit
Absolute THEN PC relative
(ORG) PCO ELSE absolute short
or absolute long
depending on value of
operand
Absolute short or
NOPCO absolute long depending
(default) on the value of the operand

* Label defined before instruction which references it (in pass 1).

TABLE 2-8. Unknown** Location of Operand & Instruction Follows SECTION or ORG

OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
(All) FRS Absolute short
(resolved by linkage editor)
FRL Absolute long
(default) (resolved by linkage editor)

** Label undefined at time of reference (error at pass 2).

2-25

TABLE 2-9. External Reference & Instruction Follows SECTION
OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
XREF with
SECTION PCS PC relative
designa- (resolved by linkage editor)
tion
Example: IF operand defined in
XREF 2:L1 NOPCS SECTION.S or XREF,S
(default) THEN absolute short
ELSE absolute long
(resolved by linkage editor)
XREF without IF operand defined with
SECTION XREF.S
designa- (Any) THEN absolute short
tion ELSE (see below)
(resolved by linkage editor)
Example:
XREF L1 FRS Absolute short
(resolved by linkage editor)
FRL Absolute long
(default) (resolved by linkage editor)

2-26

TABLE 2-10. External Reference & Instruction Follows ORG
OPTION IN
EFFECT WHEN
OPERAND INSTRUCTION
REFERENCE OCCURRED EFFECTIVE ADDRESS MODE
IF operand defined in
XREF with SECTION.S or XREF.S
SECTION (Any) THEN absolute short
designa- ELSE absolute long
tion (resolved by linkage editor)
Example:
XREF 2:L1
XREF without IF operand defined with
SECTION XREF.S
designa- (Any) THEN absolute short
tion ELSE (see below)
(resolved by linkage editor)
Example:
XREF L1 FRS Absolute short
(resolved by linkage editor)
FRL Absolute long
(default)

(resolved by linkage editor)

2-27

2.8 SYMBOLS AND EXPRESSIONS
2.8.1 Symbols

Symbols recognized by the assembler consist of one or more valid characters
(refer to Appendix B), of which the first eight are significant. The first
character must be an uppercase letter (A-Z) or a period (.). Each remaining
character may be an uppercase letter, a digit (0-9), a dollar sign ($), a period
(.), or an underscore (). Lowercase letters can also be used at times (refer
to note in paragraph 2.I).

Numbers recognized by the assembler include decimal, hexadecimal, octal, and
binary values. Decimal numbers (the default) are specified by a string of
decimal digits (0-9); hexadecimal numbers are specified by a dollar sign (9)
followed by a string of hexadecimal digits (0-9, A-F); octal numbers are
specified by the commercial "at" sign (@) followed by a string of octal digits
(0-7); binary numbers are specified by a percent sign (%) followed by a string
of binary digits (0-1).

Examples:

Decimal - A string of decimal digits
Example: 12345

Hexadecimal - A dollar sign ($) followed by a string of hexadecimal digits
Example: $12345

Octal - An "at" sign (@) followed by a string of octal digits
Example: @12345

Binary - A percent sign (%) followed by a string of binary digits

Example: $%10111

(MC68881 only) IEEE standard floating-point numbers can be specified by an
optionally signed, fraction string of up to 17 decimal digits (0-9) containing a
required decimal point, the constant "E", an optional sign (+ or -), and an
exponent up to 3 decimal digits. The exponent section "E<sign>yyy" is optional;
underscores can occur for readability.

Floating-point numbers can also be specified explicitly as a series of
hexadecimal digits preceded by a colon (:). This floating-point hex format can
be used to exactly represent the mantissa, exponent, and sign bit for a given
floating-point number.

Examples:
Floating— =~ SX.XXXXXXXXXXXXXXXXEsyyy (maximum size)
point
where: s is an optional sign;
x and y are decimal digits
Example: 1234.56E-33
Floating- - :XXXXXe..
point hex

where: XxXXXX... 1S a sequence of hex digits
(up to 8 digits for .S precision, up to 16 for .D,
and up to 24 for .X or .P)

2-28

One or more ASCII characters enclosed by apostrophes (') constitute an ASCII
string. ASCII strings are left-justified and zero-filled (if necessary),
whether stored or used as immediate operands. This left justification will be
to a word boundary if one or two characters are specified, or to a longword
boundary if the string contains more than two characters. (In order to specify
an apostrophe within a literal or string, two successive apostrophes must appear
where the single apostrophe is intended to appear.)

Examples: DC.L ' ABCD!
DC.L 9l
DC.L ‘'™

2.8.2 Symbol Definition Classes

Symbols may be differentiated by usage into two general classes. Class 1
symbols are used in the operation field of the instruction (refer to paragraph
2.4 for field definitions); Class 2 symbols occur in the label and operand
fields of the instruction. Assembler directives, instruction mnemonics, and
macro names comprise Class 1 symbols; user-defined labels and register mnemonics
are included in Class 2 symbols.

A Class 1 symbol may be redefined and used independently as a Class 2 symbol,
and vice versa. As long as each symbol is used correctly, no conflict will
result from the existence of two symbols of different classes with the same
name. For example, the following is a legal instruction sequence:

ADD D1,ADD

ADD DS 2

By its usage as a Class 1 symbol, the first "ADD" is recognized as an
instruction mnemonic; likewise, the second ADD is recognized as a Class 2 symbol
identifying a reserved storage area. The assembler differentiates a Class 1
symbol from a Class 2 symbol with the same name, thereby allowing two symbol
table entries with the same name but different class.

Macro labels are a special case because the same symbol will appear as the label
(Class 2) in the MACRO definition and, subsequently, as an operation code
mnemonic (Class 1) in invocation of that same macro. Macro labels are defined
to be Class 1 symbols; their presence in the label field of a MACRO directive is
ignored as a Class 2 symbol. Therefore, macro names may be redefined as Class 2
symbols without conflict.

A symbol may not be redefined within the same class. For example, ADD (reserved
Class 1 symbol) may not be redefined as a macro label (also Class 1), nor may
"A5" (reserved Class 2 symbol) be redefined as a statement or storage location
label (also Class 2). A reserved symbol may be used only within its own class.

2-29

2.8.3 User-Defined Labels

Labels are defined by the user to identify memory locations in program or data
areas of the assembly module. Each label has two attributes: the program
section in which the memory location resides, and the offset from the beginning
of that program section.

Labels may be defined to have an absolute or relocatable value, depending upon
the program section in which the labeled memory location is found. If the
memory location is within a relocatable section (defined through the SECTION
directive), then the label has a relocatable value relative to that program
section, If the memory location is not contained within a relocatable section
(for example, the location follows an ORG directive), then the label has an
absolute value.

Labels may be defined in the label field of an executable instruction or a data
definition directive source line. It is also possible to SET or EQU a label to
either an absolute or a relocatable value.

2.8.4 Integer Expressions

Expressions are composed of one or more symbols, which may be combined with
unary or binary operations. Legal symbols in expressions include:

a. User-defined labels and their associated absolute or relocatable values.
b. Numbers and their absolute values.

c. The special symbol "*" always identifies the value of the program counter
at the beginning of the DC directive, even when multiple arguments are
specified (e.9., DC.B 1,2,3,*-3)., The program counter may be either
absolute or relocatable.

Subexpressions which involve relocatable symbols may employ only the "+" and "-"
operators. It is possible for a subexpression involving the difference between
two relocatable symbols to evaluate to an absolute value. For example, let Rl
represent a memory location at OFFSET1 bytes beyond the start of section S1, and
let R2 represent a memory location at OFFSET2 bytes beyond the start of section
S2 —- that is,

R1
R2

OFFSET1 + <start of S1>
OFFSET2 + <start of 52>

The difference between Rl and R2 may then be
R1-R2 = QFFSET1-OFFSET2 + <start of 51> - <start of S2>
If sections Sl and S2 are the same, then
R1-R2 = OFFSET1-OFFSET2
which is a constant, absolute (non-relocatable) value. Of course, if sections

81 and S2 are distinct, the expression remains a complex, relocatable
expression.

When an expression has been fully evaluated by the assembler,
categorized as one of three types of expressions:

it may be

a. Absolute expression - The expression has reduced to an absolute value
which is independent of the start address of any relocatable section.

b. Simple relocatable expression - The expression has reduced to an absolute

offset from the start of a single relocatable section.

c. Complex relocatable expression - The expression has reduced to a
constant, absolute offset in conjunction with either of the following

relocatable terms:

1. A single, negated start address of a relocatable section.

2. References to the start addresses of two or more relocatable
sections; these references may be additions to or subtractions

from the constant offset value.

NOTE

Complex relocatable expressions, such as an absolute
symbol minus a relocatable symbol, are illegal in ORG,
OFFSET, EQU, DCB, DS, COMLINE, and SET directives.

By themselves, all user-defined labels on memory locations are either absolute
or simple relocatable expressions. This includes XREF labels, which are assumed
to be absolute symbols unless their program section is specified. Complex
relocatable expressions may arise only from the addition or subtraction of two

relocatable expressions.

The following are examples of each type of expression.

ORG $1000
ARRAY DS $20 "ARRAY" is absolute
ENDARRAY EQU *-2 "ENDARRAY" is absolute
SECTION 1
R1 CLR.L D2 "R1" is simple relocatable
ADD D1,D3
R2 MOVE D3, (A0) "R2" is simple relocatable
SECTION 2
R3 EQU * "R3" is simple relocatable
MOVE ARRAY+10,D7 absolute source operand
MOVE R1+10,D7 simple relocatable source operand
MOVE R2-R1,D7 absolute source operand
MOVE R1+R2,D7 complex relocatable source operand
MOVE R3-R2 complex relocatable source operand

2-31

2.8.5 Operator Precedence
Operators recognized by the assembler include the following:

a. Arithmetic operators:

addition (+)
subtraction (=)
multiplication (*)
division (/) —-- produces a truncated integer result
unary minus (-)

b. shift operators (binary):

shift right (>>) -- the left operand is shifted to the right
(and zero-filled) by the number of bits
specified by the right operand

shift left (<) -—- analogous to >>

c. Logical operators (binary):

and (&)
or (N

Expressions are evaluatad with the following operator precedence:

1. varenthetical expression (innermost first)
2. unary minus

3. shift

4, and, or

5. multiplication, division

6. addition, subtraction

Operators of the same precedence are evaluatad left to right. All results
(including intermediate) of expression evaluation are 32-bit, truncated
integers. Valid operands include numeric constants, ASCII literals, absolute
symbols, and relocatable symbols (with "+" and "-" only).

2-32

2.9 REGISTERS

The MC68000 has sixteen 32-bit registers (D0-D7, A0-A7) in addition to a 24-bit
program counter and 16-bit status register.

Registers DO-D7 are used as data registers for byte, word, and longword
operations. Registers A0-A7 are used as software stack pointers and base
address registers; they may also be used for word and longword data operations.
All 16 registers may be used as index registers.

Register A7 is used as the system stack pointer. (The MPU actually provides two
hardware stack pointers, depending upon whether the instruction is executing in
the supervisor or user state. Stack pointers and the supervisor/user states are
explained under "Stacks and Queues" and "Privilege States™ in the M68000
16/32-Bit Microprocessor Programmer's Reference Manual.)

(MC68010 only) The MC68010 has an additional 32-bit register (VBR) and two 3-bit
registers (SFCR and DECR). The contents of the VBR are added to the
previously-calculated vector offset, during exception processing, to produce the
actual vector location. The 3-bit registers allow supervisor access to other
address spaces via MOVES, supplying function codes in the SFCR for the read
cycle(s) from the effective address location, or supplying function codes in the
DFCR for the write cycle(s) to the effective address location, respectively.

(MC68020 only) The MC68020 has four additional 32-bit registers. Two of these
registers are used as stack pointers (MSP and ISP). The other two are used as
cache registers (CACR and CAAR). MSP (master stack pointer) is active whenever
both the "S" and "M" bits of the status register are set (supervisor state).
ISP (interrupt stack pointer) is active whenever the "S" bit is set but not the
"M" bit (interrupt state). USP (user stack pointer) is active whenever the "S"
bit is 0 (user state). The cache registers support the onboard instruction
cache of the MC68020 and can be accessed only in the supervisor state.

(MC68020 only) The assembler also provides 17 pseudo register names for the
MC68020. These are the suppressed address registers used in various MC68020
addressing modes. Each register represents a content value of zero:

ZAO-ZA7 Suppressed address registers
ZD0-ZD7 Suppressed data registers
ZpC Suppressed program counter

(MC68881 only) The MC68881 floating-point co-processor provides eight 80-bit
registers and three 32-bit registers. The 80-bit registers are the floating
point data registers, FP0-FP7, that serve as destinations for most floating
point operations. The 32-bit registers are the system registers STATUS,
CONTROL, and IADDR.

The following register mnemonics are recognized by the assembler:

DO-D7 Data registers.

ZD0-ZD7 Suppressed data registers (refer to paragraph 2.6.3 (MC68020
only))

A0-A7 Address registers.

ZAO-ZA7 Suppressed address registers (refer to paragraph 2.6.3 (MC68020
only))

A7, SP Either mnemonic represents the system stack pointer of the active

system state.

2-33

ZpC

SFC or
SFCR

DFC or
DFCR

CACR

CAAR

FPO-FP7

CONTROL

STATUS

IADDR

User stack pointer (for user state on the MC68020).

Master stack pointer (for supervisor state on MC68020 only) .
Interrupt stack pointer (for interrupt state on MC68020 only).
Condition code register (low 8 bits of SR).

Status register. All 16 bits may be modified in the supervisor
state. Only low 8 bits (CCR) may be modified in user state.

Program counter. Used only in forcing program counter-relative
addressing (refer to paragraphs 2.5.3.3 and 2.5.3.4).

Suppressed program counter (refer to paragraph 2.6.3 (MC68020
only)).

Vector base register (MC68010 or newer only). Supports multiple
vector table areas during exception processing. Accessed by the
MOVEC instruction.

Alternate function code source register (MC68010 or newer only).
Accessed by the MOVEC instruction.

Alternate function code destination register (MC68010 or newer
only). Accessed by the MOVEC instruction.

Cache control register. This provides supervisor state control
and status access to the onboard instruction cache (MC68020
only).

Cache address register. This holds the address of the cache
control functions requiring an address (MC68020 only) .

Floating-point data registers (MC68881l only).

Floating-point control register. Contains four bytes. The third
is the exception enable byte to enable/disable traps for each
class of floating-point exception. The fourth byte is a mode
byte to set the user selectable modes. The remaining bytes are
reserved (MC6888l only).

Floating-point status register contains four bytes. The first
byte is a floating-point condition code byte, containing five
condition codes that are set by all move and arithmetic
floating-point instructions except FMOVEM, The third byte is a
floating-point exception byte. The fourth byte is a
floating-point accrued exception byte containing the 1logical
inclusive OR of all floating-point exceptions that have occurred
since this byte was last cleared by the user., The remaining
bytes are reserved (MC68881 only).

Floating-point instruction address register. Contains the
logical address in the main processor memory of the offending
instruction that generated a floating-point exception trap.
(MC68881 only) .

2-34

2.10 INSTRUCTION MNEMONICS

The instruction operations described in paragraphs 2.,10.1 through 2.10.12 are
used by the assembler for MC68000, MC68010, and MC68020. Paragraphs 2.10.13 and
2.10.14 however, describe instructions which are valid only for the MC68010 and
MC68020 microprocessors. Paragraphs 2.10.15 through 2.,10.24 describe
instructions which are valid only for the MC68020 microprocessor. Paragraphs
2.10.25 through 2.10.25.12 describe instructions which are valid only for the
MC68881 floating-point co-processor.

NOTE

The M68000 Family Resident Structured Assembler has been implemented
using the instructions described in this section. Differences found
in the MC68020 32-Bit Virtual Memory Microprocessor Reference Manual
or the MC68020 32-Bit Virtual Memory Microprocessor User's Manual
will be resolved in the next revision.

2.10.1 Arithmetic Operations

The MC68000/MC68010/MC68020 instruction set includes the operations of add,
subtract, multiply, and divide. Add and subtract are available for all data
operand sizes. Multiply and divide may be signed or unsigned. Operations on
decimal data (BCD) include add, subtract, and negate. The general form is:

[label:] <operation>.<size> <source>,<destination>
Examples:
ADD.W D1,D2 Adds low order word of D1 to low order word of D2.
SUB.B #5, (A1) Subtracts value 5 from byte whose address is contained
in Al.

On the MC68020, the signed and unsigned multiply instructions can support a
32-bit multiplier and a 64-bit product using an alternate operand syntax. This
is achieved by using two data registers. One data register, Dj, holds the
multiplier before multiplication and the low-order longword of the product after
multiplication. Another data register, Di, holds the high-order longword of the
product after multiplication (Di must be different from Dj). The general
formats are:

MULS.L <ea>, [Di:]Dj (signed multiply)
MULU.L <ea>, [Di:]Dj (unsigned multiply)

where : is a required delimiter.

The signed and unsigned divide instructions on the MC68020 have been similarly
expanded to support a 64-bit dividend, a 32-bit quotient, and a 32-bit
remainder. This is achieved by using two data registers to hold the dividend
before division and to separately hold the quotient and remainder after
division. Data register Di thus holds the high-order longword of the dividend
before division and the remainder after division. Data register Dj holds the
low-order 1longword of the dividend before division and the quotient after
division. If a single data register Dj is specified or Di equals Dj, it is to
be used as both the high-order and low-order 32 bits of the dividend for the
divide, and the 32-bit quotient of the division is returned in it. No remainder
is returned in this case. The general formats are:

DIVS.L <ea>, [Di:]Dj (signed division)
DIVU.L <ea>, [Di:]Dj (unsigned division)

2-35

2.10.2 MOVE Instruction
The MOVE instruction is used to move data between registers and/or memory. The
general form is:
MOVE.<size> <source>,<destination>
where:

<size> = B, W, or L

Examples:
MOVE Dl1,D2 Moves low order word of D1 into low order word of D2.
MOVE.L. XYZ,DEF Moves longword addressed by XYZ into longword addressed
by DEF.
MOVE.W #'A',ABC Moves word with value of $4100 into word addressed by
ABC.
MOVE ADDR,A3 Moves word addressed by ADDR into low order word of A3.

2-36

2.10.3 Compare and Check Instructions

The general formats of the compare and check instructions are:
CMP.<size> <operandj>,<operand>
CHK <bounds>,<register>

where operand] is compared to operand, by the subtraction of operand; from
operandy without altering operandj or operandj.

The MC68020 allows the check instruction to have a longword size:
CHK.<size> <ea>,Dn

where:
<size> = W (default) or L

On the MC68020, the CMPI instruction allows any data addressing mode other than
immediate for the specified effective address location.

Condition codes resulting from the execution of the compare instruction are set
so that a "less than" condition means that operand, is less than operand,,
and "greater than" means that operand, is greater than operandj.

The CHK instruction will cause a system trap if the register contents are less
than zero or greater than the value specified by "bounds".

Examples:
CMP.L. ADDR,D1 Compares longword at location ADDR with contents of D1,
setting condition codes accordingly.
CHK (A0) ,D3 Compares word whose address is in A0 with low order
word of D3; if check fails (see text), a system trap is
initiated.

2.10.4 Logical Operations

Logical operations include AND, OR, EXCLUSIVE OR, NOT, and two logical test
operations. These functions may be done between registers, between registers
and memory, or with immediate source operands. The general form is:

<operation>.<size> <source> ,<destination)>

where:

<size> = B, W, or L
Example:

AND D1,D2 Low order word of D2 receives logical 'and' of low
order words in D1 and D2.

The destination may also be the status register (SR) or the condition code
register (CCR) in the case of the ANDI instruction.

2-37

2.10.5 Shift Operations
Shift operations include arithmetic and logical shifts, as well as rotate and
rotate with extend. All shift operations may be either fixed with the shift
count in an immediate field or variable with the count in a register. Shifts in
memory of a single-bit position left or right may also be done. The general
form is:

<operation>.<size> <count>,<operand>
where:

<size> = B, W, or L

Examples:

LSL.W #5,D3 Performs a left, logical shift of low order word of D3
by 5 bits; W is optional (default).

ASR (A2) Performs a right, arithmetic shift of word whose
address is contained in A2; because this is a memory
operand, the shift is only 1 bit.

ROXL.B D3,D2 Performs a left rotation with extend bit of low order

byte of D2; shift count is contained in D3.

2.10.6 Bit Operations

Bit operations allow test and modify combinations for single bits in either an

8-bit operand for memory destinations or a 32-bit operand for data register

destinations. The bit number may be fixed or variable. The general form is:
<operation> <bitno>,<operand>

where:

<size> = Bor L

Examples:
BCLR #3,XYZ(A3) Clears bit number 3 in byte whose address is given by
address in A3 plus displacement of XYZ.
BCHG D1,D2 Tests a bit in D2, reflects its value in condition code

Z, and then changes value of that bit; bit number is
specified in Dl.

Under Mask3 of the MC68000 chip, the instructions BCLR, BSET, and BTST have
8-bit memory operands; under Mask2 they had 16-bit memory operands. To enable
users who wrote programs under Mask2 -- using BCHG, BCLR, BSET, and BTST
instructions -- and to reassemble these programs under Mask3, the replacement
instructions BCHGW, BCLRW, BSETW, and BTSTW are provided. These instructions
align the destination operand at the next higher byte when bits 0-7 are accessed
{thus functioning under Mask3 exactly as BCHG, BCLR, BSET, and BTST functioned
under Mask2). In making the change, replace only the instruction mnemonic; no
change is required to the operand field.

2-38

2.10.7 Conditional Operations
Condition codes can be used to set and clear data bytes. The general form is:
Sce <location>

where "cc" may be one of the following condition codes:

CC or HS GE LS PL
CS or LO GT LT T
EQ HI MI vc
F LE NE VS
Example:
SNE (A5) + If condition code NE (not equal) is true, then set byte

whose address is in A5 to 1l's; otherwise, set that byte
to 0's; increment A5 by 1.

2-39

2.10.8 Branch Operations

Branch operations include an unconditional branch, a branch to subroutine, and
14 conditional branch instructions. The general form is:

<operationd>.<extent> <location>
Examples:
BRA TAG Unconditional branch to the address TAG.
BSR SUBDO Branch to subroutine SUBDO.
Bcec.S NEXT Short branch to NEXT on condition "cc", which may be

one of the following condition codes (note that T and F
are not valid condition codes for conditional branch):

CC or HS GT LT vC
CS or .O HI MI VS
EQ LE NE
GE LS PL

All conditional branch instructions use PC-relative addressing only and may be
either one-word or two-word instructions. The corresponding displacement ranges
are:

one-word -128...+127 bytes (8-bit displacement)
two-word -32768...+32767 bytes (l6-bit displacement)

Forward references in branch instructions use the longer format by default (OPT
BRW) . The default may be changed to the shorter format by specifying OPT BRS or
OPT BRB. The default extent may be overridden for a single branch operation by
appending appropriate extent codes to the instruction -- for example:

BRA.S LAB

A branch instruction with a byte displacement must not reference the statement
which immediately follows it. This would result in an 8-bit displacement value
of 0, which is recognized by the assembler as an error condition.

Example (illegal):

BEQ.S LABL LABl is the next memory word and, thus, generates
LAB1 MOVE #1,D0 an error.

The MC68020 allows three sizes of offsets: byte (.B or .S), word (.W), and
longword (.L). These provide byte, 2-byte, and 4-byte offsets, respectively.
Compatibility with the o0ld word (.L) sizes is available by using the new
OPT OLD directive (refer to paragraph 3.5.2.10). The default offset size is
still word (two bytes). Branch sizes can also be forced with several new force
branch size directives: BRB or BRS (generates 8-bit defaults), BRW (generates
16-bit defaults), BRW (generates 16-bit defaults), and BRL (generates 32-bit
defaults) (refer to paragraph 3.5.2.10). These new branching sizes allow the
following:

Bcc. <size> <label>
BRA. <size> <label>
BSR. <size> <label>

where:

<size> = B (or S), W, or L

2-40

2.10.9 Jump Operations

Jump operations include a jump to subroutine and an unconditional jump. The
general form is:

<operation)>.<extent> <ea>
Examples:
JMP 4 (A7) Unconditional jump to the location 4 bytes beyond
the address in A7.
JMP.L NEXT Long (absolute) jump to the address NEXT.
JSR SUBDO Jump to subroutine SUBDO.

Forward references to a label will use the long absolute address format by
default (OPT FRL). The default may be changed to the shorter format by
specifying OPT FRS. The default extent may be overridden on a single Jjump
operation to a label by appending S or L as an extent code for the instruction.

2.10.10 DBcc Instruction

This instruction is a looping primitive of three parameters: condition, data
register, and label. The instruction first tests the condition to determine if
the termination condition for the loop has been met and, if so, no operation is
performed. If the termination condition is not true, the data register is
decremented by one. If the result is -1, execution continues with the next
instruction. If the result is not equal to -1, execution continues at the
location indicated by label. Label must be within a 16-bit displacement. The
general format of the instruction is:

DBcc <data register>,<label>
where:

"cc" may be one of the following condition codes:

CC or HS GE LS PL

Cs or LO GT LT T

EQ HI MI vC

F LE NE VS
Examples:

LAB1 NOP

DBGT DO,LABl

DBLE D1,LAB2

DBT D2,LAB1

DBF D3,LAB2
LAB2 NOP

2-41

2.10.11 Load/Store Multiple Registers

This instruction allows the loading and storing of multiple registers. Its
general format is:

MOVEM.<size> <registers>,<location> (register to memory)
MOVEM.<size> <location>,<registers> (memory to register)
where:

<size> may be either W (default) or L.

The <registers> operand may assume any combination of the following:
R1/R2/R3, etc., means Rl and R2 and R3

R1-R3, etc., means Rl through R3

When specifying a register range, A and D registers cannot be mixed; e.g., A0-2A5
is legal, but A0-DO is not.

The order in which the registers are processed is independent of the order in
which they are specified in the source line; rather, the order of register
processing is fixed by the instruction format. For further details, refer to
the MOVEM instruction in the MC68000 16/32-Bit Microprocessor Programmer's
Reference Manual.

Examples:

MOVEM (A6)+,D1/D5/D7 Load registers D1, D5, and D7 from three
consecutive (sign-extended) words in memory,
the first of which is given by the address in
A6; A6 1is incremented by 2 after each
transfer.

MOVEM.L A2-A6,-(A7) Store registers A2 through A6 in five
consecutive longwords in memory; A7 is
decremented by 4 (because of .L); A6 is
stored at the address in A7; A7 is
decremented by 4; A5 is stored at the address
in A7, etc.

MOVEM (A7)+,Al-A3/D1-D3 Loads registers D1, D2, D3, Al, A2, A3 in
order from the six consecutive
(sign-extended) words in memory, starting
with the address in A7 and incrementing A7 by
2 at each step.

MOVEM.L Al/A2/A3,REGSAVE Store registers Al, A2, A3 in three consecu-

tive longwords starting with the location
labeled REGSAVE.

2-42

2.10.12 Load Effective Address

This instruction allows computation and loading of the effective address into an
address register. The general format is:

LEA <operand>,<register>
Example:

LEA XYZ(A2,D5),Al Load Al with effective address specified by
the first operand. Refer to paragraph
2.5.2.5 for an explanation of addressing mode
"Address Register Indirect With Index".

2.10.13 Move to/from Control Register

(MC68010 or newer only) With this instruction, the specified control register
is copied to the specified general register, or the specified general register
is copied to the specified control register. This is always a 32-bit transfer,
even though the control register may be implemented with fewer bits.
Unimplemented bits read as zeros. The general format is:

MOVEC <control register>,<register>
MOVEC <register>,<control register>

Examples:

MOVEC VBR,AQ Copies contents of vector base register to
register AO.

MOVEC D7,SEC Copies contents of register D7 to the source
function code register (3 bits).

MOVEC DFC, DO Copies contents of destination function code
register to register DO (3 bits; zero filled).

MOVEC.L USP,D7 Copies user stack pointer to register D7.

(MC68020 only) Four additional <control register> values are recognized for the
MC68020:

CACR: Cache control register
CAAR: Cache address register
MSP: Master stack pointer

ISP: Interrupt stack pointer

NOTE

If the instruction is used without setting the processor
type in this command line or in the OPT P=68XXX, then an
error is generated.

2-43

2.10.14 Move to/from Address Space

(MC68010 or newer only.) Moves a byte, word, or longword from the specified
general register to a location within the address space determined by the DFC
register, or moves a byte, word, or longword from a location within the address
space determined by the SFC register to the specified general register. Note
that with a byte operation size specified, the address register direct mode is
not allowed.

General format:

MOVES <ea>,<register>
MOVES <register>,<ea>

Examples:
MOVES.W (A2)+,D2 Moves a word at the address contained in
register A2 to register D2 and then increments
A2 by 2.
MOVES A4,LABEL Moves the lower word of register A4 to the
address of LABEL.
MOVES 2222,A2 Moves one word of data beginning at address

2222 to register A2,

NOTE

If the instruction is used without setting the processor
type in the command line or in the OPT P=68XXX, then an
error is generated.

2.10.15 Bit Fields and Instructions (MC68020 only)

NOTE
The instructions in paragraphs 2.10.15 through 2.10.24 require
that the processor type be set to 68020 in the command line or
in the OPT P=68XXX directive. Otherwise, an error is generated.

A bit field is a string of consecutive bits in a bit array. The address of the
bit array is determined by the address of the byte containing bit 0 (the base
address). Bit fields extend in both directions from bit 0 and are assigned bit
field numbers from 0 (the leftmost and most significant bit) to 7 (the rightmost
and least significant bit). By this notation a preceding byte's least
significant bit has a bit field number of 8. Instructions reference bit fields
using two parameters: a bit field offset and a bit field width. A bit field
offset is the bit field number of the leftmost bit in the field; its range is
-2%%3] to (2**31) - l. The bit field width is the number of bits in the bit
field; its range is 1 to 32. :

2-44

2.10.15.1 - Single Operand Bit Field Instructions.

This section explains the following single operand bit fields: complement,
clear, set and test.

Complement Bit Field

Complements a bit field at the specified effective address location. Condition
code fields are modified, depending on the value in the bit field before the
complement. A bit field is selected by the bit field offset (the starting bit)
and the bit field width (the number of bits included).
General format:

BFCHG <ea>{<offset>:<width>}

where:

{, ¢, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register DO-D7.

Example:
BFCHG LABEL{0:D1l} Complements the bit field at address LABEL from bit

0 to bit n - 1 where n is the value in DI1.

Clear Bit Field

Clears a bit field at a specified effective address location. Condition code
fields are modified, depending on the value in the bit field before the clear.
A bit field is selected by the bit field offset (the starting bit) and the bit
field width (the number of bits included).
General format:

BFCLR <ea)> {<offset>:<width>}

where:

{, +, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register DO0-D7.

Example:

BFCLR LABEL{D1:8} Clears the bit field at address LABEL starting at the
bit specified in D1 for 8 bits.

2-45

Set Bit Field

Sets all bits of a bit field at a specified effective address 1location.
Condition code fields are modified, depending on the value in the bit field
before the set. A bit field is selected by the bit field offset (the starting
bit) and the bit field width (the number of bits included).
General format:

BFSET <ea>{<offset>:<width>}

where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register DO-D7.

Example:

BFSET 2222{0:8} Sets one byte at address 2222 to all 1's.

Test Bit Field

Sets condition codes according to the value in the bit field at the specified
effective address location. A bit field is selected by the bit field offset
(the starting bit) and the bit field width (the number of bits included).
General format: .

BFTST <ead>{<offset>:<width>}
where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register DO-D7.

Example:

BFTST (A2){D1l:D2} Clears condition codes V and C; sets N and 2
according to the bits of the bit field.

2-46

2.10.15.2 Double Operand Bit Field Instructions.

This section explains the following double operand bit fields: extract signed,
extract unsigned, find first one, and insert.

Extract Bit Field Signed

The bit field at the specified effective address location is sign-extended to 32
bits and loaded into a data register. Condition code fields are modified,
depending on the value in the bit field before the sign extension. A bit field
is selected by the bit field offset (the starting bit) and the bit field width
(the number of bits included).
General format:

BFEXTS <ea>{<offset>:<width>},Dn
where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register DO-D7.

Example:
BFEXTS LABEL{0:8},D1 The value of the byte at LABEL is sign-extended
and then loaded into D1.

Extract Bit Field Unsigned

The bit field at the specified effective address location is zero extended to 32
bits and loaded into a data register. Condition code fields are modified,
depending on the value in the bit field before the zero extension. A bit field
is selected by the bit field offset (the starting bit) and the bit field width
(the number of bits included).
General format:

BFEXTU <ea>{<offset>:<width>},Dn
where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register D0-D7.

Example:

BFEXTU LABEL{0:8},Dl1 The value of the byte at LABEL is zero-extended
and then loaded into Dl.

2-47

Find First One in Bit Field

The bit field at the specified effective address location is examined for the
most significant bit position that is set. 1If a set bit exists, the bit offset
for that bit is loaded into a data register. If no bit is set, a value is
loaded in a data register equal to the offset plus the width of the bit field.
Condition code fields are modified, depending on the value in the bit field
before the examination. A bit field is selected by the bit field offset (the
starting bit) and the bit field width (the number of bits included).

General format:
BFFFO <ead>{<offset>:<width>},Dn
where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register DO-D7.

Example:

BFFFO LABEL{0:1},Dl If bit 0 is set, then 0 is loaded into D1, else 1
is loaded into DI1.

Insert Bit Field

Move a bit field from the low-order bits of the data register to the bit field
at the specified effective address location. Condition code fields are
modified, depending on the value in the bit field before the insertion. A bit
field is selected by the bit field offset (the starting bit) and the bit field
width (the number of bits included).
General format:

BFINS Dn,<ea>{<offset>:<width>}
where:

{, :, and } are required delimiters; <offset> and <width> may be an
immediate value or a data register D0O-D7.

Example:

BFINS D1,LABEL{0:8} Move the low-order byte of D1 to the 8-bit field at
address LABEL.

2-48

2.10.16 Check Instructions (MC68020 only)

Check and compare register instructions are discussed in the following
paragraphs.

2.10.16.1 Check Register Against Bounds. Check the value in register Rn
against the 1lower- and upper-bound pair at the address of the specified
effective address location. Wnen signed comparisons . are wmade, the
arithmetically smaller value should be taken as the lower bound. For unsigned
comparisons, the logically smaller value should be taken as the lower bound. If
the instruction size is byte (.B) or word (.W), only the low-order byte or word
of a data register, respectively, is used for the comparison. When Rn is an
address register, an instruction size of byte or word results in a sign
extension of the bound operands before the comparison. If the register is out
of bounds, exception processing is initiated and a vector number that references
the CHK instruction exception vector is generated. Only control addressing
modes are allowed.

General format:
CHK2.<size> <ea>,Rn
where:

<size> =B, W, or L

Example:

CHK2.B LAREL,D1 The instruction following this instruction is executed
provided the value of the low-order byte of D1 is
greater than the contents of LABEL and less than the
contents of LABEL + 1.

2.10.16.2 Compare Register Against Bounds. This has exactly the same
functionality as CHK2, except that no exception processing will occur if the
value in Rn is not within bounds.

General format:

CMP2 <ea>,Rn

2-49

2.10.17 Truncated Divide Instructions (MC68020 only)

Truncated divide instructions use signed or unsigned arithmetic.

2.10.17.1 Truncated Signed Divide. Using signed arithmetic, divide the 32-bit
value in data register Dj by the value at the specified effective address
location., After division, Dj contains the signed 32-bit quotient, and Di
optionally contains the 32-bit remainder, provided Di is not equal to Dj. When
Di and Dj are the same, no remainder is generated.

General format:
TDIVS.<size> <ea>,[Di:]Dj
where:

<size> =L

2.10.17.2 Truncated Unsigned Divide. Using unsigned arithmetic, divide the
32-bit value in data register Dj by the value at the specified effective address
location, After division, Dj contains the unsigned 32-bit quotient and data
register, and Di optionally contains the 32-bit remainder, provided Di is not
equal to Dj. When Di and Dj are the same, no remainder is generated.

General format:
TDIVU.<size> <ea>,[Di:]Dj
where:

<size> = L

2-50

2.10.18 Sign Extend Instructions (MC68020 only)

Instructions are given for both byte and word.

2.10.18.1 Sign Extend Byte. Extend bit 7 to bits 31 through 8 of data register
Dn if <size> 1is long, or else extend bit 7 to bits 15 through 8.

General format:
EXTB.<size> Dn
where:

<size> = W (default) or L

Example:

EXTB.L. D1 Copies the value of bit 7 to bits 31 through 8 of D1,

NOTE

EXTB.W is the same as the instruction
EXT.W for the MC68000 and MC68010.

2.10.18.2 Sign Extend Word. Extend bit 15 to bits 31 through 16 of data
register Dn.

General format:
EXTW.<size> Dn
where:

<size> = W (default) or L

NOTE

EXTB.W is the same as the instruction
EXT.W for the MC68000 and MC68010.

2-51

2.10.19 BCD Instructions (MC68020 only)

Instructions include both pack and unpack for BCD.

2.5.19.1 Pack BCD. Pack the low four bits of each of two bytes into one byte.
When a predecrement addressing mode is specified, bits 3 through 0 of the two
fetched consecutive source bytes are concatenated to form a packed byte, which
is written to the destination. When both operands are data registers, bits 11
through 8 and bits 3 through 0 of the source register are concatenated to form
the low-order packed byte of the destination data register.

General format:

PACK ~-(Ay) ,~-(Ax)
PACK Dy,Dx

where:

Ay and Ax are address registers; Dy and Dx are data registers

2,10.19.2 Unpack BCD. Two BCD digits in the source byte are stored in two
consecutive bytes at the destination. When predecrement addressing is used, two
BCD digits in the source byte are separately written to two consecutive bytes,
and destination bits 7 through 4 are set to zero. When data registers are used,
bits 7 through 4 and bits 3 through 0 of the source register are placed in bits
11 through 8 and bits 3 through 0, respectively, of the destination register.
All other bits of the destination register are set to zero.

General format:

UNPK - (Ay) ,-(Ax)
UNPK Dy,Dx

where:

Ay and Ax are address registers; Dy and Dx are data registers.

2-52

2.10.20 Module Instructions (MC68020 only)

Both call and return are module instructions.

2.5.20.1 Call Module. An external module descriptor resides at the specified
effective address location. This module descriptor contains control
information for entry into the associated module. A module frame, containing
the current module state, is created on the top of the stack. The new module
state is then loaded from the external module descriptor. No condition codes
are affected by this instruction. Only control-alterable addressing is allowed.

General format:
CALLM #ddd ,<ea>
where:

ddd is the 8-bit number of bytes of arguments passed to the called module.

2.10.20.2 Return from Module. A previously saved module state, from a CALLM
instruction, is reloaded from the top of the stack. A register Rn is used as
the module data area pointer. If the module state includes a saved module data
area pointer, register Rn is restored; else Rn is unchanged. No condition codes
are affected.

General format:

RTM Rn

2.10.21 Trap on Condition Code (MC68020 only)

If the specified condition code is true, exception processing occurs. The vector
number generated references the TRAPcc exception vector. The stacked program
counter points to the next instruction. If the specified condition code is
false, control passes to the next instruction in seguence. Any of the 16
condition codes may be referenced. Condition codes are not affected by this
instruction. The #xxx parameter in the TPcc form allows a 16- or 32-bit value
to be embedded within the instruction for reference in exception processing.

General format:

Tcc
TPcc.<size> #FxxX

where:

<size> = W (default) or L

2-53

2.10.22 Compare and Swap with Operand (MC68020 only)
In the CAS instruction the specified effective address location is compared to
data register Dw. If operands match, the update operand in data register Dy is
written to the specified effective address location. If operands do not match,
Dw is loaded with the contents at the specified effective address location.
In the CAS2 instruction, both Dwl and Dw2 must match the values in memory
pointed to by registers Rzl and Rz2, respectively, in order that these memory
values be updated by the contents of registers Dyl and Dy2. If both operands do
not match, then Dwl and Dw2 are loaded with the contents of memory pointed to by
registers Rzl and Rz2, respectively.
General formats:

CAS.<size> Dw,Dy,<ea>

CAS2.<size> Dwl:Dw2,Dyl:Dy2,(Rzl): (Rz2)
where:

<size> = B, W, or L

2.10.23 Breakpoint (MC68020 only)
The operation of this instruction is implementation-dependent. The processor
will ask for the operation word which the breakpoint has replaced. If the
operation word is furnished, the processor will execute that instruction and
continue. If the operation word is not furnished, the processor will take an
illegal instruction exception.
General format:

BKPT #<vector>

where:

#<vector> specifies the breakpoint for which the processor is to request
the corresponding operation word. Value = 0 through 7.

2-54

2.10.24 The MC68881 Co-Processor Instructions (MC68881 only)

NOTE

The instructions in paragraphs 2.10.25.1 and 2.10.25.2 require
that the processor type be set to 68881 in the OPT directive
or from the command line. Otherwise, an error is generated.

At present, the assembler supports only the MC68881 co-processor. The assembler
syntax that follows refers to opcodes for the MC6888l, even though the MC68020
can support other co-processors which follow MC68881 protocols. Floating-point
condition codes used in opcodes for the MC68881 are listed in Table 2-11.

TABLE 2-11. MC6888l-Specific Floating-Point Condition Codes (fpcc)

TRAP ON UNORDERED

fpce INVERSE

Gl Greater than NGI' Not greater than

GE Greater than or equal NGE Not greater than or equal

LT Less than NLT Not less than

GL Greater or less than NGL Not greater or less than

LE Less than or equal NLE Not less than or equal

GLE Greater or less than or equal NGLE Not greater or less than or equal
SEQ Equal SNEQ Not equal

ST Always SF Never

NO TRAP ON UNORDERED

fpcc INVERSE
OGT Greater than ULE Not greater than
(Unordered or less or equal)
OGE Greater than or equal ULT Not greater than or equal
(Unordered or less than)
OLT Less than UGE Not less than
(Unordered or greater or equal)
OGL Greater or less than UEQ Not greater or less than
(Unordered or equal)
OLE ILess than or equal UGT Not less than or equal
(Unordered or greater than)
OR Ordered UN Unordered
EQ Equal NEQ Not equal

(Unorxdered or greater or less)
T Always F Never

2-55

2.10.24.1 Co-Processor Branch Conditionally. If the specified floating-point
condition code is met, program execution continues at address <label>. Condition
codes are not affected by this instruction.

General format:
FBfpcc <label>
where:

fpcc is defined in paragraph 2.10.24.

2.10.24.2 Decrement and Branch on Condition. If the specified floating-point
condition code is met, execution continues with the next instruction.
Otherwise, the low-order word in the specified data register Dn is decremented
by one. If the result is equal to -1, execution continues with the next
instruction, else execution continues at address <label>. Condition codes are
not affected by this instruction.

General format:
FDBfpcc Dn,<label>
where:

fpce is defined in paragraph 2.10.25.

2.10.24.3 Set on Condition. The specified floating-point condition code is
tested. 1If the condition is true, the byte at the specified address location is
set to TRUE (all 1's); otherwise that byte is set to FALSE (all 0's). No
condition codes are affected by this instruction. Only data-alterable
addressing modes are allowed.

General format:
FSfpcc <ea>
where:

fpcc is defined in paragraph 2.10.25.

2-56

2.10.24.4 Trap on Condition, with or without a parameter. If the selected
floating-point condition code is true, then the processor initiates exception
processing. The vector number generated references the TRAPcc exception vector.
The stacked Program Counter then points to the next instruction. If the
selected floating-point condition code is not true, then no operation is
performed and execution continues with the next instruction in sequence.
Condition codes are not affected by this instruction.

General formats:

FTfpcc
FTPfpcc.<size> #xxx

where:

fpcc is defined in paragraph 2.10.25.
<size> = Wor L

#xxx is a 16- or 32-bit parameter used to uniquely identify a particular
FTPfpcc instruction.

2.10.24.5 Co-processor Save Function. This instruction saves the internal
state for the context switch at the specified effective address location.
Cordition codes are not affected by this instruction. Only postdecrement or
alterable control addressing modes are allowed. This 1is a privileged
instruction.

General format:

FSAVE <ea>

2.10.24.6 Restore Internal State of Co-Processor. This instruction restores
the internal state for the context switch from the specified effective address
location. Condition codes are not affected by this instruction. Only
postincrement or control addressing modes are allowed. This is a privileged
instruction.

General format:

FRESTORE <ea>

2-57

2.10.24.7 Move to Floating-Point Register from Memory or from Another
Floating-Point Register Instruction.

FMOVE.<size> <ea>,FPn

where:

<size> = B, W (default), L, S, D, X, or P; FPn is a floating-point register

FMOVE.<size> FPm,FPn

FMOVEM.<size> <ea>,<fp reg list>

FMOVEM.<size> <ea>,Dn - (See note below.)
FMOVECR.<size> #ccc,FPn

where:

<size> = X (default); FPm, FPn are different floating-point registers;
<fp reg list> is of the form FP1/FP2/FP3... and/or FP1l-FP3...; Dn is a data
register; ccc is a group of frequently used floating-point constants:
(These are tentative.)

cce value

00 Pi = 3.14159...

0B Logl0(2)
ocC e = 2.71828...
0D Log2(e)
OE LoglO(e)
OF 0.0
10 Logn(2)
11 Logn (10)
12 10**0 (1.0)
13 10**1
14 10**2
15 10**4
16 10**8
17 10**16
18 10**32
- 19 10**64
1A 10**128
1B 10**256
1C 10**512

1D 10**1024
1E 10*%*2048
1F 10**4096

NOTE: Dn indicates that the FMOVEM bit mask is in a MC68020 data register.

FMOVEM.<size> <ea> ,CONTROL,/STATUS/IADDR (See note below.)
FMOVE.<size> <ea>,CONTROL|STATUS|IADDR
where:

<size> = L (default); CONTROL, STATUS, and IADDR are floating-point system
registers.

NOTE: From 1 to 3 of these registers can be specified, each separated from one
another by a slash in FMOVEM. The vertical lines of FMOVE represent
selection choices.

2-58

2.10.24.8 Move from Floating-Point Register to Memory Instructions.

FMOVE.<size> FPn,<ea

where:

<size> = B, W (default), L, S, D, X, or P; FPn is a floating-point register.

FMOVE. P FPn,<ea> {#k}

where:

FPn is a floating-point register; { and } are required delimiters; #k has a
default value of immediate data -16.

FMOVE.P FPn,<ea>{Dn}

where:

FPn is a floating-point register; { and } are required delimiters; Dn is a
data register holding a dynamic k value.

FMOVEM.<size> <fp reg_ list>,<ea>
FMOVEM.<size> Dn,<ea> (See note below.)
where:

<size> = X (default); <fp reg list> is of the form FP1/FP2/FP3... and/or
FP1-FP3...; Dn is a data register.

NOTE: Dn indicates that the FMOVEM bit mask is in a MC68020 data register.

FMOVEM.<size> CONTROL/STATUS/IADDR,<ea> (See note below.)
FMOVE.<{size> CONTROL]STATUS]IADDR,<ea>
where:

<size> = L (default); CONTROL, STATUS, and IADDR are floating-point system
registers.

NOTE: From 1 to 3 of these registers can be specified, each separated from one
another by a slash. The vertical lines of FMOVE represent selection
choices.

2-59

2.10.24.9 Floating-Point Functions.

a. Source Operand in Memory
F<op>.<size> <ea>,FPn
where:
<size> = B, W (default), L, S, D, X, or P; <op> is defined below in
paragraph c.; FPn is a floating-point register
b. Source Operand in Floating-Point Register
F<op>.<size> FPm,FPn
where:
<size> = B, W (default), L, S, D, X, or P; <op> is defined below in
paragraph c.; FPm and FPn are floating-point registers
c. Source Operand and Destination in Same Floating-Point Register
F<op>.<size> FPn
where:

<size> = X (default); FPn is a floating-point register; <op> is:

ABS absolute value
ACOS arccosine
ASIN arcsine

ATAN arctangent
ATANH hyperbolic arctangent

Cos cosine
COsSH hyperbolic cosine
ETOX e**x ; powers of e (Euler's constant)

ETOXM1 e**(x-1) ; Euler's constant to the x-1 power
GETMAN get the mantissa

GETEXP get the exponent

INT integer part

LOGN natural log; base e log
LOGNP1 natural log (x+l)

LOGL0 common log; base 10 log
LOG2 binary log; base 2 log
NEG negate

SIN sine

SINH hyperbolic sine

SQORT square root

TAN tangent

TANH hyperbolic tangent
TENTOX 10**x ; powers of 10
TWOTOX 2**x; powers of 2

2-60

d. Sine/Cosine Function
FSINCOS.<size> <ea>,FPm:FPn (FPm=sin,FPn=cos)
where:
<size> =B, W, L, S, D, X, or P

FPm is the floating-point register holding the sine result.
FpPn is the floating-point register holding the cosine result.

2.10.24.10 Floating-Point Arithmetic Operations.

a. One Source Operand is in Memory
F<op>.<size> <ea>,FPn

where:

<gize> = B, W (default), L, S, D, X, or P (except D or X not allowed
for <size> of SGLDIV or SGLMUL); FPn is a floating-point register;
<op> is defined below in paragraph b.

b. Both Source Operands in Floating-Point Registers
F<op> .<size> FPm,FPn

where:

<size> = X (default) (except only S allowed for <size> of SGLDIV or
SGLMUL) ; FPm and FPn are floating-point registers; <op> is:

ADD add

CMP compare

DIV divide

MOD modulo

MUL multiply

REM remainder

SCALE scale exponent

SGLDIV single-precision divide
SGLMUL single-precision multiply
SUB subtract

YTOX y**x (powers of y)

2-61

2,10.24.11 Floating-Point NO-OP. This instruction is supplied for
synchronization with the floating-point co-processor.

General format:

FNOP

2.10.24.12 Floating-Point Test of an Operand. The operand at the specified
effective address location is compared with =zero. Floating-point condition
codes as specified in paragraph 2.10.25 are set according to the result of the
test.

General format:
FTEST.<size> <ea>
where:

<size> =B, W, L, S, D, X, or P

2-62

2,11 VARIANTS ON INSTRUCTION TYPES

Certain instructions allow a "quick" and/or an "immediate" form when immediate
data within a restricted size range appear as an operand. These abbreviated
forms are normally chosen by the assembler, when appropriate. However, it is
possible for the programmer to "force" such a form by appending a Q or I to the
mnemonic opcode (to indicate “quick" or “immediate", respectively) on
instructions for which such forms exist. If the specified quick or immediate
form does not exist, or if the immediate data does not conform to the size
requirements of the abbreviated form, an error is generated.

Some instructions also have "address" variant forms (which refer to address
registers as destinations); these variants append an A to the instruction
mnemonic (for example, ADDA, CMPA). This variant is chosen by the assembler
without programmer specification, when appropriate to do so; the programmer need
specify only the general instruction mnemonic. However, the programmer may
"force" or specify such a variant form by appending the A. If the specified
variant does not exist or is not appropriate with the given operands, an error
is generated.

The CMP instruction also has a memory variant form (CMPM) in which both operands
are a special class of memory references. The CMPM instruction requires
postincrement addressing of both operands. The CMPM instruction will be
selected by the assembler, or it may be specified by the programmer.

The variations -- A, Q, I, and M -- must conform to the following restrictions:

A Must specify an address register as a destination, and cannot specify
a byte size code (.B).

0 Requires immediate operand be in a certain size range. MOVEQ also
requires longword data size.

I The size of immediate data is adjusted to match size code of
operation.
M Both operands must be postincrement addresses.

For example, the instruction
ADDQ #9,D0 Attempts to add value 9 to DO

causes an assembly error, because the immediate operand is not in the valid size
range (1 through 8).

2-63

Although the assembler selects the appropriate opcode variation -- A, Q, I, or M
-~ when the suffix is not specified, the explicit encoding of the suffix with
the basic opcode is recommended for the following purposes:

a.

b.

For documentation, to make clear in the source language the instruction
form that was assembled.

To force a format other than that which the assembler selects. For
example, the assembler selects the quick (Q) form for the instruction

ADD #1,D4 Adds the value 1 to D4 via an ADDQ (2-byte)
instruction.

If the immediate (I) form is desired, the programmer must declare it
explicitly, as follows:

ADDI #1,D4 Adds the value 1 to D4 via an ADDI (4-byte)
instruction.

To dgenerate invariant code when using variant immediate data (separate
assemblies) .

2-64

CHAPTER 3

ASSEMBLER DIRECTIVES

3.1 INTRODUCTION

All assembler directives (pseudo-ops), with the exception of "DC" and "DCB", are
instructions to the assembler rather than instructions to be translated into
object code. This chapter contains descriptions and examples of the basic forms
of the most frequently used assembler directives. Directives controlling the
macro and conditional assembly capabilities are described in Chapter 5.
Directives used in structured syntax are described in Chapter 6. The most
commonly used directives supported by the assembler are grouped, by function, in
Table 3-1.

TABLE 3-1. M68000 Family Assembler Directives

DIRECTIVE FUNCTION

ASSEMBLY CONTROL

END Program end

INCLUDE Include second file

MASK?2 Assemble for Mask2 (R9M)
OFFSET Define offsets

ORG Absolute origin

SECTION Relocatable program section

SYMBOL DEFINITION

EQU* Assign permanent value

FEQU* Assign permanent floating-point value
(MC68881 only)

REG* Define register list

SET* Assign temporary value

DATA DEFINITION/
STORAGE ALLOCATION

COML INE* * Command line

DC** Define constants

DCB* * Define constant block
DG** Define storage

3-1

TABLE 3-1.

M68000 Family Assembler Directives (cont'd)

DIRECTIVE

FUNCTION

LISTING CONTROL
AND OUTPUT OPTIONS

FAIL
FOPT

FORMAT
NOFORMAT
LIST

NOLIST or NOL
LLEN n
NOOBJ
OPT
PAGE

NOPAGE
SPC n
TTL

Programmer-generated error

Assigns floating-point options
(MC68881 only)

Enable the automatic formatting

Disable the automatic formatting

Enable the listing

Disable the listing

Set line lengths 72 < n < 132

Disable object output

Assembler options

Top of page

Disable paging

Skip n lines

Up to 60 characters of title

LINKAGE EDITOR CONTROL

IDNT*
XDEF
XREF

Relocatable identification record
External symbol definition
External symbol reference

* Labels required.
** Label optional.

3.2 ASSEMBLY CONTROL

FORMAT:

DESCRIPTION:

END [<start address>]

END directive indicates to the assembler that the source is
finished. Subsequent source statements are ignored. The END
directive encountered at the end of the first pass through the
source program causes the assembler to start the second pass. The
start address should be specified unless it is external to the
module. If no start address is specified, it is still possible to
include a comment field, provided the comment field is set off by
an exclamation point (!). This syntax indicates to the assembler
that the operand field is null and that a comment field follows.

3.2.2 INCLUDE - Include Secondary File

FORMAT :

DESCRIPTION:

INCLUDE <file spec>

This directive is inserted in the source program at any point
where a secondary file is to be included in the source input
stream.

NOTE

<file spec> 1s case-sensitive
in the SYSTEM V/68 environment.

3.2.3 MASK2 - Assemble for MASK2 (MC68000 only)

FORMAT:

DESCRIPTION:

3.2.4 OFFSET
FORMAT:

DESCRIPTION:

MASK?2

The MASK2 directive indicates that the source program is to be
assembled to run on the Mask2 (R9M) chip. Specifying MASK2
implements the following changes in assembler processing:

(a) DCNT instruction replaces DBcc
(b} STOP does not take an operand
(c) Bit operations are adjusted to the R9M format

- Define Offsets
OFFSET <expression>

The OFFSET directive is used to define a table of offsets via the
Define Storage (DS) directive without passing these storage
definitions on to the linkage editor, in effect creating a dummy
section. Symbols defined in an OFFSET table are kept internally,
but no code-producing instructions or directives may appear. SET,
EQU, REG, XDEF, and XREF directives are allowed.

<expression> is the value at which the offset table is to begin.
The expression must be absolute and may not contain forward,
undefined, or external references.

OFFSET must be terminated by an ORG or SECTION directive before
further code-producing instructions are generated. If not, the
assembler produces an error message.

3.2.5 ORG - Absolute Origin

FORMAT :

DESCRIPTION:

ORG[.<qualifier>] <expression> [<comments>]

The ORG directive changes the program counter to the value
specified by the expression in its operand field. Subsequent
statements are assigned absolute memory locations starting with
the new program counter value. <expression> must be absolute and
may not contain any forward, undefined, or external references.

Qualifier may be either "S" or "L". '"ORG.S" is interpreted as
both "ORG" and "OPT FRS" (Forward Reference Short Option).
"ORG.L" is interpreted as both "ORG" and "OPT FRL" (Forward
Reference Long Option). Regardless of the forward reference
option, references to previously-defined absolute symbols will
always generate the appropriate short or long addressing form,
based upon the size of a symbol's absolute address.

3.2.6 SECTION - Relocatable Program Section

FORMAT :

DESCRIPTION:

[<name>] SECTION[.S] <number>

This directive causes the program counter to be restored to the
address following the last location allocated in the indicated
section (or to zero if used for the first time).

<name> indicates a named common area within the indicated section.
No unnamed common section is allowed. <name> is associated with
the section and may be reused in other sections.

".8" indicates the section should be placed in low address memory,
so that direct addressing may be implemented through the absolute
short mode. This information is passed on to the linkage editor.
It affects the choice of address modes in certain situations where
the assembler must choose between absolute short and absolute
long.

<number> must be in the range 0..15. No section numbers are
reserved in any way. (refer to the M68000 Family Linkage Editor
User's. Manual or the SYSTEM V/68 Linkage Editor User's Manual for
a discussion of default assignment of sections to segments.) By
default, the assembler begins with section 0.

3.3 SYMBOL DEFINITION

Symbol definition directives EQU, REG, SET , and FEQU provide the only method by
which a symbol appearing in the label field may be assigned a 'value' other than
that corresponding to the current location counter.

3.3.1 EQU - Equate Symbol Value

FORMAT :
DESCRIPTION:

<label> EQU <expression> [<comments>]

EQU directive assigns the value of the expression in the operand
field to the symbol in the label field. The label and expression
follow the rules given in Chapter 2. The label and operand fields
are both required, and the label cannot be defined anywhere else
in the program.

The expression in the operand field of an EQU cannot include a
symbol that is undefined or not yet defined (no forward references
are allowed). Also, it cannot be a complex relocatable expression.

3.3.2 FEQU - Equate Floating Point Symbol Value (MC68881 only)

FORMAT :
where <size>
DESCRIPTION:

<label> FEQU.<size> <value> [<comments>]
=8, D, X, ox P

FEQU directive assigns the floating-point value in the operand
field to the symbol in the label field. The label and value
follow the rules given in Chapter 2. The operand fields are both
required, and the label cannot be defined anywhere else in the
program. Note that <valued> is stored as a string and converted
only to its binary format when it is used 1in instructions.
<value> may be a floating-point decimal string or a floating point
hexadecimal value as defined in paragraph 2.8.1l. A warning is
generated whenever the number of bits required to represent the
specified precision is exceeded. The subsequent <label> must not
be used as an address.

3.3.3 REG - Define Register List

FORMAT:
DESCRIPTION:

<label> REG <reg list> [<comment>]

REG directive assigns a value to <label> that can be translated
into the register list mask format used in the MOVEM instruction.
The label cannot be redefined as a Class 2 symbol anywhere else in
the program. <reg list> is of the form:

R1[-R2] [/R3[-R4]]...

Example: Al-A5/D0/D2-D4/D7

3.3.4 SET - Set Symbol Value

FORMAT:
DESCRIPTION:

<label> SET <expression> [<comments>]

SET directive assigns the value of the expression in the operand
field to the symbol in the label field. Thus, the SET directive
is similar to the EQU directive. However, the SET directive
allows the symbol in the label field to be redefined by other SET
directives in the program. The label and operand fields are both
requiread.,

The expression in the operand field of a SET cannot include a

symbol that is undefined or not yet defined (no forward references
are allowed), nor can it be a complex relocatable expression.

3-5

3.4 DATA DEFINITION/STORAGE ALLOCATION

The directives in this section provide the only means by which object code may
begin or end on odd byte boundaries. All instructions and all word or long
word-sized data must begin and end on even byte boundaries. 0dd byte alignment
is allowed only for the DC.B, DS.B, DCB.B, and COMLINE directives. All other
operations which generate object code are preceded by a zero fill byte if word
boundary alignment is required.

3.4.1 COMLINE - Command Line
FORMAT: [<label>] COMLINE <expression>

DESCRIPTION: Identical to DS.B (define storage in bytes), except that it is
passed on to the linkage editor as the location of the command
line. <expression> is the number of bytes to reserve (>0). It
must be absolute and may not contain forward, undefined, or
external references. An example of use would be to pass a
filename for the program to access.

3.4.2 DC - Define Constant

FORMAT : [<1label>] DC.B <operand(s)> Define constant in bytes
[<label>] DC.W <operand(s)> Define constant in words (default)
[<label>] DC.L. <operand(s)> Define constant in long words

[<label>] DC.S <operand(s)> Define constant in single
precision floating-point
(MC68881 only)

[<1label>] DC.D <operand(s)> Define constant in double
precision floating-point
(MC68881 only)

[<1label>] DC.X <operand(s)> Define constant in extended
precision floating-point
(MC68881 only)

[<1label>] DC.P <operand(s)> Define constant in packed binary
coded decimal (MC68881 only)

DESCRIPTION: The function of the DC directive is to define a constant in
memory. The DC directive may have one or more operands, which are
separated by commas. The operand field may contain the actual
value (decimal, hexadecimal, or ASCII). Alternatively, the
operand may be a symbol or expression which can be evaluated
either by the assembler or the linker. The constant is aligned on
a word boundary if word (.W), longword (.L), single precision
(.S), double precision (.D), extended precision floating-point
(«X), or packed BCD (.P) is specified. Alignment is on a byte
boundary if byte (.B) is specified. Only byte (.B) constants may
not be relocated by the linker.

3-6

The following rules apply to size specifications on DC directives
with ASCII strings as operands:

DC.B

DC.W

DC.L

3.4.2.1 Examples of

One byte is allocated per ASCII character.

The string begins on a word boundary. If the string
address contains an odd number of characters, a zero fill
byte follows the last character.

The string begins on a word boundary. If the string length
is not a multiple of four bytes, the last longword is zero
filled.

Unless option CEX is in effect, a maximum of six bytes of
constants is displayed on the assembly listing.

ASCII Strings

DC.B 'ABCDEFGHI'

DC.B |Jl
DC.W 'E!
DC X!
DC.L '12345'

3.4.2.2 Examples of

Memory has nine contiguous bytes with the ASCII characters
A through I.

Memory has characters "EJ" ($454A) in contiguous bytes,

Memory has $45004500 in contiguous bytes, the first zero
byte being an odd byte fill as outlined above.

Memory has $5800 in contiguous bytes.

Memory has $3132333435000000 in contiguous bytes.

Numeric Constants

pC.B 10,5,7
oc.w 10,5,7
pc.L. 10,5,7
DC LABEL+1

DC $FF,$10,9AE
DC.S 3.1415

DC.D 2.54

Memory has three contiguous bytes with the decimal values
10, 5, and 7 in their respective bytes.

Each operand is contained in a word. The value 10 is
contained in the first word, right justified. The value 5
is in the second word, and the value 7 is in the third
word.

Each operand is contained in a longword. The value 10 is
contained in the first longword (4 bytes) right justified.
The value 5 is in the second longword, and the value 7 is
in the third longword.

The generated value is the address of LABEL plus 1 in a
word size operand.

Rules for hexadecimal are same as decimal.
A single precision floating-point value is created.

A double precision floating-point value is created.

DC.X 6.0224E23 An extended precision floating-point value is created.

DC.X :BABElO An extended precision floating-point hex value is created.
NOTE: "E" here can be only a hex digit, not an exponent
designator.

DC.P 3.00E9 A packed BCD value is created.

If the resulting value in an operand expression exceeds the size of the operand,
an error is generated. For example,

DC.B SFFF This causes an error because S$SFFF cannot be repre-
sented in 8 bits.

DC SFFF6F This causes an error because SFFF6F cannot be represented
in 16 bits.

3.4.3 DCB -~ Define Constant Block
FORMAT: [<label>] DCB[.<size>] <length>,<value> [<comment>]

where:
<size> =B, W, L, S, D, X, or P (S, D, X, P for MC68020/MC68881 only)

<value> = <binary,decimal> (Floating~-point only when S, D, X,
<hexadecimal>, or P used)
<floating-point hex>

DESCRIPTION: DCB directive causes the assembler to allocate a block of bytes,
words, or long words, quad words (.D), or hex words (.X or .P)
depending upon the <size> specified. If <size> is omitted, word
(W) 1is the default size. The block length is specified by the
absolute expression <length>, which may not contain undefined,
forward, or external references. The initial wvalue of each
storage unit allocated will be the sign-extended expression
<value>, which may contain forward references. <length> must be
greater than zero. <value> may be relocatable unless byte size
(.B) is specified.

3.4.4 DS - Define Storage

FORMAT: [<label>] DS.B <operand> Define storage in bytes
[<label>] DS.W <operand> Define storage in words (default)
[Klabel>] DS.L <operand> Define storage in long words
[K1label>] DS.S <operand> Define storage in long words
(MC68881 only)

[<label>] DS.D <operand> Define storage in quad words
(MC68881 only)

[<label>] DS.X <operand> Define storage in hex words
(MC68881 only)

[<label>] DS.P <operand> Define storage in hex words
(MC68881 only)

3-8

DESCRIPTION:

Examples:

PT1
PT2

DS directive is used to reserve memory locations. The contents of
the memory reserved are not initialized in any way.

DS.B 10 Define 10 contiguous bytes in memory

DS 10 Define 10 contiguous words in memory

DS $10 Define 16 contiguous words in memory

DS.L 100 Define 100 contiguous long words in memory
DX.X 10 Define 10 contiguous hex words in memory

The label will reference the lowest address of the defined storage area. If
word, longword, single, double, extended precision, or packed BCD mode is
specified, the storage area is aligned on a word boundary.

Example:

DS.B

1
DS 0
DS.W 0 SET LOCATION COUNTER TO EVEN BOUNDARY
DS.L O

RESERVE ONE BYTE

The operand must be absolute and may not contain forward, undefined, or external

references.

3.5 LISTING CONTROL AND OUTPUT OPTIONS

305.1 FAIL -

FORMAT:
DESCRIPTION:

3.502 FOPT -

FORMAT:
DESCRIPTION:
OPTIONS:

Programmer Generated Error

FAIL <expression>

The FAIL directive causes an error or warning message to be
printed by the assembler. The total error count or warning count
is incremented as with any other error or warning. The FAIL
directive is normally used in conjunction with conditional
assembly directives for exceptional condition checking. The
assembly proceeds normally after the error has been printed. The
<expression> is evaluated and printed as the error or warning
number on the assembly listing. Errors are numbered 0-499;
warnings are numbered 500 and above.

Floating-Point Assembler Options (MC68020/MC68881 only)

(option>[,<option>] ... [<comment>]
Follows the command format.

ID = Co-processor identification. Allows more than one MC68881 in
a system. New instructions can be defined using existing macro
capabilities. An example would be creating two differrent macros:

FZAI)D.S 00
F3ADD.S ...

where the macro definition of F2ADD.S begins with "FOPT ID=2"
while F3ADD.S begins with "FOPT ID=3".

The default value for ID is 1.

3-9

ROUND=<type> Select IEEE rounding type. Values for <type> are:

N Round to nearest representation (the even value when two
numbers exist).

P Round toward plus infinity.
M Round toward minus infinity.

7Z Round toward zero; positive numbers are rounded down and
negative numbers are rounded up.

PREC=<type> Select IEEE precision type. Values for <type> are:
X Extended precision (default)
D Double precision

S Single precision

3.5.3 FORMAT - Format The Source Listing

FORMAT: FORMAT

DESCRIPTION: Format the source listing, including column alignment (refer to
Table 4-1) and structured syntax indentation (refer to paragraph
6.5.4). This option is selected by default.

3.5.4 NOFORMAT - Do Not Format The Source Listing

FORMAT: NOFORMAT

DESCRIPTION: The source listing has the same format as the source input file.

3.5.5 LIST - List The Assembly

FORMAT: LIST

DESCRIPTION: Print the assembly listing on the output device. This option is
selected by default. The source text following the LIST directive
is printed until an END or NOLIST directive is encountered.

3.5.6 NOLIST - Do Not List The Assembly

FORMAT: NOLIST or NOL

DESCRIPTION: Suppress the printing of the assembly 1listing until a LIST
directive is encountered.

3-10

3.5.7 LLEN - Line Length

FORMAT: LLEN n

DESCRIPTION: Set the number of columns to be output to n. The minimum value of
n is 72 and the maximum 132. The default value for n is 132
columns.

FORMAT: NOOBJ

DESCRIPTION: Suppress the generation of object code.

3.5.9 OPT - Assembler Options

FORMAT: OPT <option>[,<option>}... [<comment>]

DESCRIPTION: Follows the command format.

OPTIONS: A

NOA

BRL

BRS
or
BRB
BRW
CEX
NOCEX
CL
NOCL

CRE

Absolute address. All non-indexed operands which reference
either labels or the current assembler location counter (*)
is resolved as absolute addresses.

Disable A (default).

Forward branch 1long (default). Forward references in
relative branch instructions (Bcc, BRA, BSR) will assume
the longer form (16-bit displacement, yielding a 4-byte
instruction) .

A 32-bit displacement is assumed unless the directive
"OPT OLD" is in effect (MC68020 only).

Forward branch short. As with BRL, but using the shorter
form (8-bit displacement, yielding a 2-byte instruction).
Generate default branch size of 16 bits.

Print DC expansions.

Opposite of CEX (default).

Print conditional assembly directives (default).

Opposite of CL.

Print cross-reference table at end of source listing. This
option must precede first symbol in source program. If

this option is not in effect, only the symbol table is
printed.

3-11

EQU

NOEQU

FRL

FRS

MC
NOMC
MD

NOMD

NOMEX

NOO

OLD

NOOLD

PCO

NOPCO

Debug option (output symbol table to file with the same
name as the object code file, but with an extension of
" _Rg") .

Retain equates not used by the program in the symbol table
and debug file.

Remove unused equates (default).

Forward reference long (default). Forward references in
the absolute format assumes absolute long mode (32-bit).

Forward reference short. Forward references in the
absolute format assumes absolute short mode (16-bit).

Print macro calls (default).
Opposite of MC.

Print macro definitions (default).
Opposite of MD.

Print macro expansions.

Opposite of MEX (default).

Create output module (default).
Opposite of O.

Interpret the branch size code .L as being a 16-bit branch.
Also interpret future uses of "OPT BRL" as referring to
forward 16-bit branches.

Change back to new branch size meanings for size .LL
(MC68020 only) .

PC relative addressing within ORG. Enploy relative
addressing, when possible, on backward references occurring
in an ORG section.

Disable PCO (default).

Force PC relative addressing within SECTION. Forces PC
relative addressing (whenever such an addressing mode is
legal) in an instruction which occurs within a relocatable
SECTION and references an operand in a relocatable SECTION
(need not be the same SECTION as the instruction). Failure
to resolve such a reference into a 16-bit displacement from
the PC results in an error. This option may be used to
force position independent code (refer to Chapter 7);
however, this option does not force PC relative addressing
of absolute operands {(defined in ORG section) or unknown
forward references.

3-12

NOPCS Disable PCS (default).

P=<type> Select microprocessor type; <type> may be 68000, 68010,

68020, or 68881, Default is 68000. Note that P=68881 can
be 1in effect concurrently with P=68000, P=68010, or
P=68020. This can be written on a single line, for example
by saying OPT P=68010/68881. If P=68010, 68020, or 68881,
it must appear before any of the special MC68010, MC68020,
or MC68881 instructions, respectively (or it may be
specified on the command line; refer to Chapter 4).

3.5.10 PAGE - Top Of Page

FORMAT :

DESCRIPTION:

PAGE

Advance the paper to the top of the next page. The PAGE directive
does not appear on the program listing. No label or operand is
used, and no machine code results.

3.5.11 NOPAGE - Do Not Page Source Output

FORMAT:

DESCRIPTION:

305012 SH: -

FORMAT':

DESCRIPTION:

NOPAGE

Suppress paging to the output device. Output lines are printed
continuously with no page headings or top and bottom margins.

Space Between Source Lines
SPC n

Output n blank lines on the assembly listing. This has the same
effect as inputting n blank lines in the assembly source. A blank
line is defined by the assembler to be a line with only a carriage
return.

FORMAT:

DESCRIPTION:

TTL <title string>

Print the <title string> at the top of each page. A title
consists of up to 60 characters. The same title will appear at
the top of all successive pages until another TTL directive is
encountered. In order to print a title on the first listing page,
the TTL directive must precede the first source line which will
appear on the listing.

3-13

3.6 LINKAGE EDITOR CONTROL

30601 IDNT -
FORMAT:

DESCRIPTION:

3.6.2)(DEF -

FORMAT':

DESCRIPTION:

3.6.3 XREF -

FORMAT:

DESCRIPTION:

Relocatable Identification Record
<module name> IDNT <version>,<revision> [<descr>]

Every relocatable object module must contain an identification
record as a means of identifying the module at link time. The
module name is specified in the label field of the IDNT directive,
while the version and revision numbers are specified as the first
and second operands, respectively. The comment field of the IDNT
directive is also passed on to the linkage editor as a description
of the module.

External Symbol Definition
XDEF <symbol>[,<symbol>]... [<comment>]

This directive specifies symbols defined in the current module
that are to be passed on to the linkage editor as symbols which
may be referenced by other modules linked to the current module.

External Symbol Reference

XREF[.S] [<section>:]<symbol> [,<symbol>]...
[,[<section>:]<symbol> [,<symbol>].eslee.

This directive specifies symbols referenced in the current module
but defined in other modules. This list is passed on to the
linkage editor. Each symbol is associated with the specified
<section> number which it follows. (Symbols may occur in any
section, including an absolute ORG section, if no <section>
designation is specified; see following example.)

",8" indicates the XREF symbols will be linked into low address
memory so that direct addressing of these symbols may be
accomplished through absolute short mode.

EXAMPLE: XREF AA,2:E2,3:E3,B3,C3

The symbol AA can be in any se¢tion; E2 is in section 2; and E3, B3, and C3 are

in section 3.

3-14

CHAPTER 4

INVOKING THE ASSEMBLER

4.1 INTRODUCTION

The flexible, multitask environment of the VERSAdos and the SYSTEM V/68
Operating Systems are similar in Command Line Format, notably in the options
supported, and the assembly output file areas. Both systems are discussed
below.

4,2 VERSAdos ENVIRONMENT

4.2.1 Command Line Format
The command line format for the assembler running under VERSAdos is:

ASM <source file>[,[<object file>][,<listing file>]][;<options>]
Only the <source file> is required. The default extension on the <source file>
is SA. 1If the <object file> and/or <listing file> are not specified, they will
default to the same filename as the <source file>, but with extensions of RO and
LS, respectively. The following command lines are equivalent:

ASM TEXT

ASM TEXT,TEXT,TEXT
ASM TEXT.SA,TEXT.RO,TEXT.LS

NOTES

1. The source file exists on a device which supports
VERSAdos Block I/0. For example, the source file cannot
be the user's console (#).

2. #NULL is not allowed as an object file. Users who wish
to inhibit the generation of an object file should
specify the command line option -C.

Default extensions are assumed for <object filed> and <listing file>, if not
specified. Multiple source files may be assembled by separating these input
files with a slash (/). In the case of multiple source files, the first file
name is used for the default object and listing filenames. The listing may be
output to the CRT or the printer during assembly by specifying the appropriate
mnemonic in place of the listing file; e.g., the command ASM TEXT,,#PR prints
the listing.

4-1

The assembler recognizes the following options on the command line:

C Produce object code (default).
-C Inhibit production of object code.
D Produce symbolic debug symbol table file.
-D Inhibit production of debug file (default).
F Enable floating-point warning messages during assembly
{(default) (MC68881 only).
-F Disable floating-point warning messages during assembly
(MC68881 only) .
L Produce listing (default).
-L Inhibit listing.
M List macro expansions.
-M Inhibit listing of macro expansions.
o} Branch size code extensions are the same as in previous
M68000 assemblers.
-0 Offers same functionality as directive "OPT NOOLD"
(MC68020 only).
P=68000 Accept MC68000 instruction set (default).
P=68010 Accept MC68010 instruction set.
P=68020 Accept MC68020/MC68881 instruction set.
P=68xxx/68881 Accept MC68881 instruction set, where xxx is 000, 010 or
020.
R Produce cross-reference.
-R Inhibit production of cross-reference (default).
S List structured control expansions.
-S Inhibit 1listing of structured control expansions
(default).
W Enable warning messages during assembly (default).
-W Disable warning messages during assembly.
Z=<size> Increase data area size (default is 37K).

Multiple options are typed without separation —- e.g., ;LM-CP=68000. Refer also
to paragraph 3.5.2.10 for assembler options which may be included in the source
code with the OPT directive. When there is a conflict between an option
specified on the command line and one specified with the OPT directive, the
command line option overrides.

4.2.2 Symbol Table Size Option

The symbol table size may be increased by specifying the Z option:

Z=<size>

where:

<size> is the number of Kbytes to be used in the data (stack + heap) area of
the assembler. <size> is in K (1024) bytes.

For example:
ASM TEST,,#PR;RZ=40
will assemble the source program in TEST.SA, put the relocatable code in

TEST.RO, and send the listing, including cross-references, to the printer rather
than to a listing file. The data area will be 40K bytes.

4-2

4.2.3 Microprocessor Type Option

The microprocessor type can be specified with the P=<type> option on the command
line, where <type> may be 68000, 68010, 68020, or 68881, If omitted, default is

P=68000.

NOTE

The MC68881 floating-point co-processor can be specified
with any of the previous values by separating the two
values with a slash (/) --e.g., P=68020/68881l.

4.3 SYSTEM V/68 ENVIRONMENT

4.3.1 Command Line Format

The command line format for the assembler running under SYSTEM V/68 is:

asm [<sep><option>] ... <sep><source file>

where:
asm
<sep>

<source file>

<option>

is the SYSTEM V/68 command that invokes the assembler.
is a field separator consisting of one or more spaces.

is the single input file for the assembler (file lists are
not supported for SYSTEM V/68).

is any option that may be accepted by the assembler. More
than one option may be specified. Options may be specified
after <source file> as well as before it.

The syntax of <option> is:

+|- option char>[<option param>]

where:

+

<option char>

is option enable (required, unlike VERSAJos)
is option disable
is a one character option identifier in equivalent upper or

lowercase characters defined exactly the same as in the
VERSAdos environment.

<option param> is any required/allowed parameter which immediately follows

the option character, e.g., = 68010 or = <sized>.

4-3

The SYSTEM V/68 options supported are the same as the options for a VERSAdos
environment with the exception of the ¢ (or C), 1 (or L) and 4 (or D) options.
The +c option allows an option parameter. This option parameter specifies the
filename of the object code file. When +c appears without an option parameter,
a default filename based on the <source file> name is generated. Similarly, the
+1 and +d option allows an option parameter that specifies the filename of the
listing file and symbol table file, respectively. The +1 and +d options provide
for a similar default file naming convention.

As in the VERSAdos environmment, the user may allow the assembler output file
name to be defaulted. If a listing file or an output file is generated and the
user has not specified the name of the listing or output file, the filename is
based on the <source file> name. If the <source file> name is a pathname, the
pathname is stripped from the filename, so that the listing file or output file
name resides in the current working directory.

A suffix is expected for all files (source, listing, and output). The suffix is
defined as a "." followed by zero or more characters. When no suffix exists, a
default suffix is appended by the assembler.

The default suffixes (even for uppercase filenames) are:

.Sa source file

.1s listing file

.YO object code file
oIS symbol table file

If the +1 option appears without an option parameter, the listing filename is
the source filename with its suffix replaced by ".1ls". 1If the +1 option appears
without a suffixed option parameter, the ".1ls" suffix is added. Similar
defaulting occurs for the +c and +d options.

Due to difficulties with syntax, the file list supported in the VERSAdos
environment is not supported in the SYSTEM V/68 environment. Only one input
file can be named on the command line of the assembler. To add some relief to
this restriction, INCLUDE directive files may be nested one level,

4.4 ASSEMBLER OUTPUT

Assembler output includes an assembly listing, a symbol table, a symbolic debug
symbol table file, and an object program file.

The assembly 1listing includes the source program, as well as additional
information generated by the assembler. Most lines in the listing correspond
directly to a source statement. Lines which do not correspond directly to a
source line include:

. Page header and title
. Error and warning lines
. Expansion lines for instructions over three words in length

The assembly listing format is shown in Table 4-1. The label, operation, and

operand fields may be extended if the source field does not fit into the
designated output field.

4-4

The last page of the assembly listing is the symbol table. Symbols are listed
in alphabetical order, along with their values and an indication of the
relocatable section in which they occur (if any). Symbols that are XDEF, XREF,
REG, in named common, or multiply defined are flagged. If option CRE has been
specified in the program, the cross-reference listing will identify the source
lines on which the symbol was defined or referenced (definitions appear first,
flagged with a "-").

An example of assembler output is provided in Appendix C.

I1f the option "D" was specified either in the source program or on the command
line, the symbolic debug symbol table is output to a file given the same name as
the relocatable object file, with an extension of ".RS". Linking (with the
linker's "D" option) makes this information available for easy debugging with
the SYMbug program. Refer to the MC68000 Family Linkage Editor User's Manual,
Appendix D, for .RS file formats or the SYSTEM V/68 PAL Linkage Editor User's
Manual, Appendix E.

TABLE 4-1. Standard Listing Format

COLUMNS CONTENTS EXPLANATION
1-4 Source line number 4-digit decimal counter
6 Section number 1-digit hex section number

{(blank indicates location counter
is absolute)

8-15 Location counter value In hex
17-20 Operation word In hex
21-24 First extension word In hex
25-28 Secornd extension word In hex; any additional extension

words appear on the next line

30-37 Label field
39-46 Operation field
48-67 Operand field
70-N Comment field

4.5 ASSEMBLER RUNTIME ERRORS

During runtime, the assembler may generate its own error messages. These are
listed in Appendix E. However, since the assembler is a Pascal program and
operates in the VERSAdos operating system environment or the SYSTEM V/68
environment, runtime errors may occur from these sources as well. Refer to the
VERSAdos Messages Reference Manual -or the SYSTEM V/68 Pascal Compiler User's
Manual for applicable runtime error messages.

Any assembly instruction generating six or more bytes of code, which is found to
have an operand error, can generate six bytes of object code. The code for the
instruction is $4AFB, which is an illegal opcode; the extension word(s) is
$4E71, which is a NOP. These six bytes allow more instructions to be patched in
place or a jump to be inserted to a patch area anywhere in the address space.

Instructions which generate only two or four bytes continue to generate a 2- or
4-byte length instruction, respectively, whenever an operand is in error. The
instruction word, however, is illegal, and the extension is a NOP.

Undefined operations generate six bytes of code with an illegal opcode and NOP
extensions.

CHAPTER 5

MACRO OPERATIONS AND CONDITIONAL ASSEMBLY

5.1 INTRODUCTION

This chapter describes the macro (paragraph 5.2) and the conditional assembly
(paragraph 5.3) capabilities of the assembler. These features can be used in
any program.

5.2 MACRO OPERATIONS

Programming applications frequently involve the coding of a repeated pattern of
instructions that, within themselves, contain variable entries at each iteration
of the pattern, or basic coding patterns subject to conditional assembly at each
occurrence. In either case, macros provide a shorthand notation for handling
these patterns. Having determined the iterated pattern, the programmer can,
within the macro, designate fields of any statement as variable. Thereafter, by
invoking a macro, the programmer can use the entire pattern as many times as
needed, substituting different parameters for the designated variable portions
of the statements.

Macro usage can be divided into two basic parts -- definition and expansion.

When the pattern is defined, it is given a name. This name becomes the mnemonic
by which the macro is subsequently invoked (called). The name of a macro
definition should not be the same as an existing instruction mnemonic or an
assembler directive,

Expansion occurs when the previously defined macro is called (invoked). The
macro call causes source statements to be generated. The generated statements
may contain substitutable arguments. The statements that may be generated by a
macro call are relatively unrestricted as to type. They can be any processor
instruction, almost any assembler directive, or any previously-defined macro.
Source statements generated by a macro call are subject to the same conditions
and restrictions to which programmer-generated statements are subject.

The invocation of a macro requires that the macro name appear in the operation
field of a source statement. Most arguments are placed in the operand field.
Appropriate arguments selected according to the macro definition cause the
assembler to produce in-line coding variations of the macro definition.

The effect of a macro call is the same as an open subroutine in that it produces
in-line code to perform a predefined function. The in-line code is inserted in
the normal flow of the program so that the generated instructions are executed
in-line with the rest of the program each time the macro is called.

5.2.1 Macro Definition
The definition of a macro consists of three parts:
a. The header: <label> MACRO

The <label> of the MACRO statement is the "name" by which the macro is
later invoked. This name must be a unique class 1 symbol, A macro name
may not have a period (.) as any character other than the first.

b. The body

The body of a macro is a sequence of standard source statements. Macro
parameters are defined by the appearance of argument designators within
these source statements. Legal macro-generated statements include the
set of MC68000, MC68010, MC68020, and MC68881 assembly language
instructions, assembler directives, structured syntax statements, and
calls to other, previously defined macros. However, macro definitions
may not be nested. When macro text lines are saved for later expansion,
all spaces in the source line are compressed. This space compression
will be noticed only if the listing is unformatted or if the macro text
includes literal strings with multiple spaces (which would not expand
correctly). Macro expansion lines which contain more than 80 characters
are truncated at 80 characters, which is the maximum length of an
assembler input line.

c. The terminator: ENDM

5.2.2 Macro Invocation
The form of a macro call is: [<label>] <name>[.<qualifier>] [<parameter list>]

Although a macro may be referenced by another macro prior to its definition in
the source module, the macro must be defined before its first in-line expansion.
The name of the called macro must appear in the operation field of the source
statement; parameters may appear as qualifiers to the macro name and/or in the
operand field of the source statement, separated by commas.

The macro call produces in-line code at the location of the invocation,
according to the macro definition and the parameters specified in the macro
call. The source statements so generated are then assembled, subject to the
same conditions and restrictions affecting any source statement. Nested macro
calls are also expanded at this time.

5.2.3 Macro Parameter Definition and Use

Up to 36 different, substitutable arguments may appear in the source statements
which constitute the body of a macro. These arguments are replaced by the
corresponding parameters in a subsequent call to that macro.

Arguments are designated by a backslash character (\), followed by a digit (0
through 9) or an uppercase letter (A through Z). Argument designator \0 refers
to the qualifier appended to the macro name; parameters in the operand field of
the macro call refer to argument designations \1 through \9 and \A through \Z,
in that order.

The parameter 1list (operand field) of a macro call may be extended onto
additional lines if necessary. The line to be extended must end with a comma
separating two parameters, and the subsequent extension line must begin with an
ampersand (&) in column 1. The extension of the parameter list will begin with
the first non-blank characters following the ampersand. No other source lines
may occur within an extended parameter call, and no comment field may occur
except after the last parameter on the last extension line.

Argument substitution at the time of a macro call is handled as a literal
(string) substitution. The string corresponding to a given parameter 1is
substituted literally wherever that argument designator occurs in a source
statement as the macro is expanded. Each statement generated in this expansion
is assembled in-line., (Note that, if a qualifier is present, argument \0 begins
with the first character following the period which separates the qualifier from
the macro name.)

It is possible to specify a null argument in a macro call by an empty string
(not a blank); except for \0, it must still be separated from other parameters
by a comma. In the case of a null argument referenced as a size code, the
default size code (W) is implied; when a null argument itself is passed as an
argument in a nested macro call, a null argument is passed. All parameters have
a default value of null at the time of a macro call.

If an argument has multiple parts or contains commas or blanks, the entire
argument must be enclosed within angle brackets (< and »>) as required
characters. Such arguments must still be separated from other arguments by
commas. A bracketed argument with no intervening character is treated as a null
argument. Embedded brackets must occur in pairs. Parameter \0 may not be
bracketed and, hence, may not contain blanks {(although commas are legal). Note
that a macro argument may not contain the characters "<" or ">" unless they
occur as part of the argument bracketing.

5.2.4 TLabels Within Macros

To avoid the problem of multiply defined labels resulting from multiple calls to
a macro which employs labels in its source statements, the programmer may direct
the assembler to generate unique labels on each call to a macro.

Assembler-generated labels include a string of the form .nnn, where nnn is a
3-digit wvalue. The programmer may request an assembler-generated label by
specifying \@ in a label field within a macro body. Each successive label
definition which specifies a \@ directive will generate successive values of
.nnn, thereby creating unique labels on repeated macro calls. Note that \@ may
be preceded or succeeded by additional characters for clarity and to prevent
ambiguity (more than four preceding characters may introduce a problem with
non-uniqueness of symbols).

References to an assembler-generated label always refer to the label of the
given form defined in the current level of macro expansion. Such a label is
referenced as an operand by specifying the same character string as that which
defines the label.

5.2.5 The MEXIT Directive

The MEXIT directive terminates the macro source statement generation during
expansion. It may be used within a conditional assembly structure (refer to
paragraph 5.3) to skip any remaining source lines up to the ENDM directive. All
conditional assembly structures pending within the macro currently being
expanded are also terminated by the MEXIT directive.

Example:

SAV2 MACRO
MOVE.L \1,SAVET SAVE 1ST ARGUMENT
MOVE.L \2,SAVET+4 SAVE 2ND ARGUMENT
IFC N3',""' IS THERE A 3RD ARGUMENT?
FAIL 1000 DID ASSEMBLER GO THRU HERE?
MEXIT NO, EXIT FROM MACRO
ENDC
MOVE.L \3, SAVET+8 SAVE 3RD ARGUMENT
ENDM

5.2.6 NARG Symbol

The symbol HNARG is a special symbol when referenced within a macro expansion.
The value assigned to MNARG is the index of the last argument passed to the
macros in the parameter list (even if nulls). NARG is undefined outside of
macro expansion and may be referenced as a Class 1 or 2 user-defined symbol
outside of a macro expansion.

5-4

5.2.7

Implementation of Macro Definition

When the sequence of source statements

MAC1 MACRO

<stmtl>
<stmt2>

<stmtn>
ENDM

is encountered in a source program, the following actions are performed:

a. The symbol table is checked for a Class 1 symbol entry of 'MACl'. If

such an entry is already present, a redefined symbol error (231) is
generated; if no such entry exists, an entry is placed in the symbol
table, identifying MACl as a macro.

Starting with the line following the MACRO directive, each line of the
macro body is saved in a character sequence identified with MACl. 1In the
example, stmtl through stmtn are saved in this manner. No object code is
produced at this time. A check is made for missing parameter references
in the macro text (e.g., parameters \l, \2, and \4 are referenced, but \3
is not).

c. Normal processing resumes with the line following the ENDM directive.

5.2.8

Implementation of Macro Expansion

When the statement:

MACl.<qualifier> <paraml>,<param2>,...,<paramn>

is encountered in a source program calling the previously defined macro MAC1
(above) , the following actions are performed:

de.

Because the label field is blank, the string MACl is recognized as the
operation code of the instruction. The symbol table is consulted for a
Class 1 symbol entry with this name. If no such entry exists, an
undefined symbol error (238) is generated. In this case, the entry
indicates that the symbol identifies a macro.

The rest of the line is scanned for parameters which are saved as
literals or null values, one such value in each of the 36 parameter
record fields. If the source line ends with a comma, the next line is
checked for an extension of the parameter list. A cross-check is made
with the macro definition for the number of parameters in the call. No
object code is produced. :

Macro expansion consists of the retrieval of the source lines which
comprise the macro body. Each line is retrieved in turn, with special
character pairs replaced by parameter strings or assembler-generated
label strings.

If a backslash character (\) is followed by either a digitr(o through 9)
or an uppercase letter (A through Z), the two characters are replaced by
the literal string which corresponds to that parameter on the macro
invocation line(s).

A character sequence which includes \@ is replaced by an
assembler-generated label, as defined in paragraph 5.2.4. An
assembler-generated label 1is uniquely identified by the characters
preceding and/or appended to the \@ sequence and the macro invocation in
which the reference occurs. Such 1labels may appear anywhere in the
source line and always refer to the current macro expansion.

NOTE

Space compression is automatically done within macros. For
example, the instruction DC.B ' ' becomes DC.B ' '.

When a line has been completely expanded, it is assembled as any other
source input line. At this time, any errors in the syntax of the
expanded assembly code are found. Expanded lines longer than 80
characters are truncated, and an error code is generated.

If a nested macro call is encountered, the nested macro expansion takes

place recursively. There is no set limit to the depth of macro call
nesting.

5-6

5.3 CONDITIONAL ASSEMBLY

Conditional assembly allows the programmer to write a comprehensive source
program that can cover many conditions. Assembly conditions may be specified
through the use of arguments in the case of macros and through definition of
symbols via the SET and EQU directives. Variations of parameters can then cause
assembly of only those parts necessary for the specified conditions.

The I/0 section of a program, for example, will vary, depending on whether the
program is used in a disk enviromment or in a paper tape environment.
Conditional assembly directives can include or exclude an I/O section, based on
a flag set at the beginning of the assembly.

5.3.1 Conditional Assembly Structure
The conditional assembly structure consists of three parts:
a. The header

There are two conditional clauses recognized by the assembler. The first
form compares the equality of two strings:

IFxx <stringl>,<string2>

"yx" specifies either the string compare (C) condition or the string not
compare (NC) condition, representing string equality and inequality,
respectively. The result of the string comparison, along with the "xx"
condition, determines whether the body of the conditional structure will
be assembled., Either string may contain embedded commas or spaces. An
apostrophe that occurs within a string must be specified by double
apostrophes.

The second form of the conditional clause compares an expression against
Zero:

IFxx <expression>

"gx" specifies a conditional relation between the expression and the
value zero. The result of this comparison at assembly time determines
whether the body of the conditional structure will be assembled. Valid
conditional relation codes include:

EQ: expression
NE: expression
LT: expression

<>
<
LE: expression <
>
>

0l

GT: expression

0
0
0
0
0
GE: expression 0

Because of the nature of this comparison, the expression must be
absolute. No forward references are allowed.

b. The body

The body of the conditional assembly structure consists of a sequence of
standard source statements. There is no set limit to the depth of
conditional assembly nesting; if such nesting occurs, a terminator must
be specified for each structure.

c. The terminator: ENDC

When an IFxx directive is encountered, the specified condition is evaluated. If
the condition is true, the statements constituting the body of the conditional
assembly structure are each assembled in turn. If the relation is false, the
entire conditional assembly structure is ignored; the ignored lines are not
included in the assembly listing. By specifying the OPT NOCL option (paragraph
3.5.2.10), the header and terminator lines are ignored for listing purposes.

IFxx and ENDC directives may not be labeled.
Testing for null parameters may be done via the string compare form of the

corditional assembly. To assemble conditionally if parameter 1 is null, either
of the following directives is correct:

or
where:

xx = C or NC

To assemble conditionally if a parameter is present, use either of the IFNC
formats analogous to the above two.

A conditional assembly structure is also terminated by a MEXIT directive, as
explained in paragraph 5.2.5. All conditional assembly structures which
originate in a macro are terminated at the exit from that macro (if not before).
Only conditional assembly structures which originated within a given macro may
be terminated within that macro. These two rules are necessary for the
consistent implementation of conditional assembly.

5.3.2 Example of Macro and Conditional Assembly Usage

The following example illustrates most of the features of macros and conditional
assembly structures. The assembly code is shown as it appears, without line
numbers or object code. Note that angle brackets (< >) shown in examples are
required characters.

MACO MACRO
MOVE.\0 \1
CLR.L \2
ENDM

MAC1

LAB\@

\@END

LAB.001

.002END

LAB,.003

.004END

MACRO
MOVE.\O
IF\3
ADD.\0
IF\3
ADD.\0
ENDC
ENDC
CLR.L
MOVE.\0
B\3
BRA
\5.\0
IFLE
MACO.\O
ENDC
ENDM

oPT
MAC1.L
MOVE.L
ADD.L
ADD.L
CLR.L
MOVE.L
BGT
BRA
ADD.L

MACL
MOVE.
CLR.L
MOVE.
BNE
BRA
SUB.
MACO.
MOVE.
CLR.L

#\1,D\2

\1 CONDITIONAL

#1,D\2

\1-5 NESTED CONDITIONAL

#2,D\2 \4
END NESTED CONDITIONAL
END CONDITIONAL

D1

D\2, (20) +

\@END

LAB\@

#1,D\2

\1

<D\2, (A0)>,A\2 NESTED MACRO CALL

MEX , NOCL

7,3,GT,<TEST PASSES>,ADD

#7,D3

#1,D3

#2,D3 TEST PASSES
D1

D3, (A0) +

.002END

LAB.001

#1,D3

0,6,NE,<ERROR HERE>,SUB

#0,D6

D1

D6, (A0) +

.004END

LAB.003

#1,D6

<D6, (A0)> ,A6 NESTED MACRO CALL
D6, (AQ)

A6

5-9/5-10

CHAPTER 6

STRUCTURED CONTROL STATEMENTS

6.1 INTRODUCTION

An assembly language provides an instruction set for performing certain
rudimentary operations. These operations, in turn, may be combined into control
structures -- such as loops (for, repeat, while) or cornditional branches
(if-then, if-then-else). The assembler, however, accepts formal, high-level
directives that specify these control structures, generating, in turn, the
appropriate assembly language instructions for their efficient implementation.
This use of structured control statement directives improves the readability of
assembly language programs, without compromising the desirable aspects of
programming in an assembly language.

6.2 KEYWORD SYMBOLS

The following Class 1 symbols, used in the structured syntax, are reserved
keywords (directives):

ELSE ENDW REPEAT
ENDF FOR UNTIL
ENDI IF WHILE

The following symbols are required in the structured syntax, but are nonreserved
keywords: —_—

AND DOWNTO TO
BY OR
DO THEN

Note that AND and OR are reserved instruction mnemonics, however.

6.3 SYNTAX

The formats for the IF, FOR, REPEAT, and WHILE statements are found in
paragraphs 6.3.1 through 6.3.4. They are spaced to show the line separations
required for Class 1 symbol usage (paragraph 6.5.1l). Syntactic variables used
in the formats are as follows:

<expression> A simple or compound expression (paragraph 6.4).

<stmtlist> Zero or more assembler directives, structured control
statements, or executable instructions.

Note that an assembler directive (Chapter 3) occurring
within a structured control statement is examined exactly
once - at assembly time. Thus, the presence of a directive
within a FOR, REPEAT, or WHILE statement does not imply
repeated occurrence of an assembler directive; nor does the
presence of a directive within an IF-THEN-ELSE statement
imply a conditional assembly structure (Chapter 5).

For correct recognition, the statements in <stmtlist> must
not appear on the same line as the structured syntax symbols.

6-1

<{size>

<extent>

<opl>

<op2>

<op3>

<op4>

The value B, W, or L, indicating a data size of byte, word,
or longword, respectively. With the keyword FOR, <size> is a
single code applying to <opl>, <op2>, <op3>, and <op4>. With
the keywords IF, UNTIL, and WHILE, <size> indicates the size
of the operand comparison in the subsequent simple expression
(refer to paragraph 6.4.2 for a compound expression). Note
that structured syntax statements rely on the underlying
opcodes and the restrictions these opcodes place on arguments
to the statements. For example, the structured syntax
statement

FOR.B D7 = #0 to #255 DO

generates code without warning but does not execute as
expected. This is because the comparison opcode CMP does a
signed comparison and hence deals with numbers in the range
-128...127 instead of 0...255. (MC6888l only: only IF is now
implemented with floating-point ranges.)

The value S or L, indicating that the branch extent is short
or long, respectively. This is appended to the keywords
THEN, ELSE, and DO, to force the appropriate extent of the
forward branch over the subsequent <stmtlist>. The default
extent for the MC68020 is determined by the option directive
(OPT, BRS, OPT BRB, OPT BRW, or OPT BRL) currently in effect.

A user-defined operand whose memory/register location holds
the FOR-counter. The effective address must be an alterable
mode.

The initial value of the FOR~counter. The effective address
may be any mode.

The terminating value for the FOR-counter. The effective
address may be any mode.

The step (increment/decrement) for the FOR-counter each time
through the loop. If not specified, it defaults to a value
of #1. The effective address may be any mode.

6.3.1 IF Statement

SYNTAX:

FUNCTION:

NOTES:

6.3.2 FOR

SYNTAX:

FUNCTION:

NOTES:

IF[.<size>] <expression> THEN[.<extent>]
<stmtlist>
ENDI

or

IF[.<size>] <expression> THEN[.<extent>]
<stmtlist>

ELSE[.<extent>]
<stmtlist>

ENDI

If <expression> is true, execute <stmtlist> following THEN;
if <expression> is false, execute <stmtlist> following ELSE,
if present, or advance to next instruction.

a. If an operand comparison <expression> is specified, the
condition codes are set and tested before execution of
<stmtlist>.

b. In the case of nested IF-THEN-ELSE statements, each ELSE
refers to the closest IF-THEN.

Statement

FOR[.<size>] <opl>
<stmtlist>
ENDF

<op2> TO <op3> [BY <op4>] DO[.<extent>]

or

FOR[.<size>] <opl>
<stmtlist>
ENDF

<op2> DOWNTO <op3> [BY <op4>] DO[.extent>]

These counting loops utilize a user-defined operand, <opl>, for the
loop counter. FOR-TO allows counting upward, while FOR-DOWNTO
allows counting downward. In both loops, the user may specify the
step size, <op4>, or elect the default step size of #1. The FOR-TO
loop is not executed if <op2> is greater than <op3> upon entry.
Similarly, the FOR-DOWNTO loop is not executed if <op2> is less
than <op3>.

a. The cordition codes are set and tested before each execution
of <stmtlist>. This happens even if <stmtlist> is not
executed.

b. A step size of #1 may not be meaningful if the counter,
<opl>, is used to index through word or longword-sized data.

c. Each immediate operand must be preceded by a # sign. For
example, the following would loop ten times by steps of
four.

FOR COUNT = #4 TO #40 BY #4 DO ...
d. The FOR structure generates a move, a compare, and either an
add or subtract. Therefore, if any of the four operards is
an A register, <size> may not be B (byte).

6-3

6.3.3 REPEAT Statement

SYNTAX:

FUNCTION:

NOTES:

6.3.4 WHILE

SYNTAX:

FUNCTION:

NOTES:

REPEAT
<stmtlist>
UNTIL[.<size>] <expression>

<stmtlist> is executed repeatedly until <expression> is true.

a. The <stmtlist> is executed at least once, even if <expression>
is true upon entry.

b. If an operand comparison <expression> is specified, the
cordition codes are set and tested following each execution of
<stmtlist>.

Statement

WHILE [.<size>] <expression> DO[.<extent>]
<stmtlist>
ENDW

The <expression> is tested before execution of <stmtlist>. While
<expression> is true, <stmtlist> is executed repeatedly.

a. If <expression> is false upon entry, <stmtlist> is not
executed,

b, If an operand comparison <expression> is specified, the
condition codes are set and tested before each execution of
<stmtlist>. The condition codes are set and tested even if
<stmtlist> is not executed.

6.3.5 (MC68020/MC68881 only.) Floating-Point Structured Assembler Syntax

IF FPn <Ffpcc> <ea> THEN

IF <ea> <Ffpcc> FPn THEN

IF FPn <Ffpcc> FPm THEN

IF <Ffpcc> THEN

where:

FPn, FPn are floating point registers; Ffpcc is a floating-point condition
code, defined in 2.10.25; F is a required constant.

When the assembler expands the structured IF statement with a floating-point
condition code, fpcc, it must choose the true IEEE inverse of cc. For example,

the code for

IF.X FP3 <FGT> #3.3 THEN (where GT is one value of fpcc and F is
a required constant value)

would be

FCMP.X #3.3,FP3
FBNGT ELSECLAUSE
ceee main clause code
BRA PAST
ELSECLAUSE

PAST

else clause code

NOTE: The branch following the FCMP is a FBNGT rather than a FBLE. FBNGT is
the IEEE inverse of FBGT.

6--5

6.4 SIMPLE AND COMPOUND EXPRESSIONS

Expressions are an integral part of IF, REPEAT, and WHILE statements. A&n
expression may be simple or compound. A compound expression consists of no more
than two simple expressions joined by AND or OR.

6.4.1 Simple Expressions

Simple expressions are concerned with the bits of the Condition Code Register
(CCR) . These expressions are of two types. The first type merely tests
conditions currently specified by the contents of the CCR (paragraph 6.4.1.1).
The second type sets up a comparison of two operands to set the condition codes,
and afterwards tests the codes (paragraph 6.4.1.2).

6.4.1.1 Condition Code Expressions. Fourteen tests (identical to those in the
Bce instruction) may be performed, based on the CCR condition codes. The
condition codes, in this case, are preset by either a user-generated instruction
or a structured operand-comparison expression (paragraph 6.4.1.2). BEach test is
expressed in the structured control statement by a mnemonic enclosed in angle
brackets (< >) as required characters, as follows:

LCC>

<CS>

<EQ>

<GE>

<GT>

<HI> For an explanation of each test, see Table A-2,
<LE> "Conditional Tests", in the MC68000 16-Bit
<LS> Microprocessor User's Manual.

<LT>

<MI>

<NE>

<PL>

<VC>

<VS>

For example:
Ir <EQ> THEN
CLR.L D2
ENDI
REPEAT

SUB D4,D3
UNTIL <LT>

6-6

6.4.1.2 Operand Comparison Expressions. Two operands may be compared in a
simple expression, with subsequent transfer of control based on that comparison.
Such a comparison takes the form:

<opl> <cc> <op2>

where:

<cc> is a condition mnemonic enclosed in angle brackets (as described in
paragraph 6.4.1.1), specifying the relation to be tested between <opl> and
<op2>. When processed by the assembler, this expression translates to a compare
instruction.

For example:
CMP <opl>,<op2>

followed by a branch instruction (Bcc) which tests the relation specified.
<opl> is normally, but not necessarily assigned to the first (leftmost) operand
and <op2> to the second (rightmost) operand of the compare instruction.

NOTE
A blank (#' ') should not be used
for the wvalue of <opl> or <op2>.

A size may be specified for the comparison by appending a data size code (B, W,
or L) to the directive, with W being the default. The only restriction is that
a byte-size code (B) may not be used in conjunction with an address register
direct operand.

Compare instructions require certain effective addressing modes for their
operands. These modes are listed in Table 6-1. However, if the operands, <opl>
and <op2>, are not listed in an order that generates a legal compare instruction
(Table 6-1), but generates a legal compare if the operand order is reversed, the
assembler reverses the operands when expanding the expression. To maintain the
nature of the relation specified, the condition operator is adjusted, if
necessary. For example, "D2 <GI> #5" is adjusted by the assembler to the
equivalent of "#5 <KLT> D2"; likewise, "A2 <EQ> (A5)" is adjusted to the
equivalent of "(A5) <EQ> A2". This processing allows the user the flexibility
of specifying the more meaningful operand order in the expression.

TABLE 6-1. Effective Addressing Modes for Compare Instructions

EFFECTIVE ADDRESSING MODES FOR:

COMPARE -
INSTRUCTIONS FIRST OPERAND SECOND OPERAND
CMP (Al11) Data register direct
CMPA (All) Address register direct
CMPI Immediate (Data alterable)
CMPM Postincrement register Postincrement register

indirect indirect

6-7

If the operands, either as stated or reversed, do not yield a legal compare
instruction, an error will result. For example, the statement

IF (Al) <NE> (A2) THEN

results in an ERROR 213 message (illegal address mode) during expansion. To
avoid this error, a MOVE is required to accamplish a legal operand, such as:

MOVE (A2) ,D2
IF (Al) <NE> D2 THEN
Examples:

WHILE.B (A3) <NE> D2 DO THIS EXPRESSION IS LEGAL AS STATED.
MOVE.B (A5) +,D2

ENDW

IF D7 <LT> #10 THEN THIS EXPRESSION IS REVERSED.
BSR SUBR1

ELSE
MULS #2,D7

ENDI

6.4.2 Compound Expressions

A canpound expression consists of two simple expressions (paragraph 6.4.1)
joined by a logical operator. The Boolean value of the compound expression is
determined by the Boolean values of the simple expressions and the nature of the
logical operator (AND or OR).

The two simple expressions are evaluated in the order in which they are given.
However, if an AND separates the expressions and the first expression is false,
the second expression is not evaluated. Likewise, 1if an OR separates the
expressions and the first expression is true, the second expression is not
evaluated. In these cases, the compound expression is either false or true,
respectively, and the condition codes reflect the result of only the first
simple expression.

A size may be specified for each operand comparison expression. The size of the
comparison for the first expression may be appended to the directive, while the
size of the comparison for the second expression may be appended to the keyword
‘AND or OR, For example, in the statement

IF.L D3 <GT> (AQ) OR.B #'Q' <EQ> BUFFER1

the first comparison is a longword comparison, and the second is a byte
compar ison.

6.5 SOURCE LINE FORMATTING

The format of structured source statements is more restricted than the format of
basic statements. The following paragraphs discuss the formatting requirements
of structured statements as well as their appearance in the assembly listing.

6.5.1 Class 1 Symbol Usage

Class 1 symbols, as described in paragraphs 2.8.2 and 6.2, are the assembler
directives (including macro names), instruction mnemonics, and the structured
control directives. Only one of these is recognized on each source line. Thus,
each directive (reserved keyword) of a structured control statement and each
executable instruction generated by the programmer must be written on a separate
source line. The following source line, for example, is in error:

REPEAT MOVE -(A5),D2 UNTIL <EQ>

because the MOVE and UNTIL symbols and their operands are not recognized, but
are treated as part of the comment field of the REPEAT directive. Likewise, the
following lines are in error:

IF <VS> THEN JSR OVERFLOW
ELSE JMP (A3) ENDI

because the JSR, JMP, and ENDI symbols and their operands are not recognized.
The correct format for these lines is as follows:

REPEAT
MOVE -(AS) ,D2
UNTIL <EQ>
and
IF <VS> THEN
JSR OVERFLOW
ELSE
JMP (A3)
ENDI

6.5.2 Limited Free-Formatting
To improve readability, limited free-formatting allows the operand field of the
IF, UNTIL, WHILE, and FOR directives to be extended onto additional consecutive
lines.
For example:

IF #15 <LT> D7

AND
(A3) <NE> D3 THEN

UNTIL (A7)+ <EQ> D2 OR

<VS>
FOR D1 = #1 TO #5
BY #1 DO

6.5.3 Nesting of Structured Statements

Structured statements may be nested as desired to create multilevel control
structures. BAn example of such nesting is the following:

IF <EQ> THEN

REPEAT
MOVE DO, (A5)+
ADDQ #4,D0
MOVE.L. A4, (A4)+
UNTIL.L A5 <LE> A4

ELSE.L
FOR D2 = #10 TO #20 BY #2 DO

WHILE D4 <LT> D2 AND D4 <LT> #100 DO
MOVE.L 10(A3,D4.W),(A5)+
ADDQ #2,D4

ENDW

ENDF
ENDI

6.5.4 Assembly Listing Format

By default (FORMAT directive), the assembly listings are formatted according to
Table 4-1. In addition, the operation and operand fields of source lines in
structured syntax are indented two columns for each nested level of operation.
This automatic formatting may be turned off by using the NOFORMAT directive.

The assembly language code generated for the structured syntax is included in
the listing when the S (or s) option is specified in the ASM (or asm) command
line.

6.6 EFFECTS ON THE USER'S ENVIRONMENT

If the S (or s) option is specified in the ASM command line (paragraph 4.2.1),
the generated code of the structured control expansions is listed. There may be
three items found in this code that will affect the user's environment:

a. During assembly, local labels beginning with "Z L" are generated. These
labels use the same increment counter (.nnn) as local labels in macros
(paragraph 5.2.4) . They are stored in the symbol table and should not be

duplicated in user-defined labels.

b. In the FOR loop, <opl> is a user-defined symbol. When exiting the loop,
the memory/register assigned to this symbol contains the value which
caused the exit from the loop.

c. Compare instructions (Table 6-1) are generated by the assembler whenever
two operands are tested relationally in a structured statement. During
runtime, however, these assembler—-generated instructions set the
condition codes of the CCR (in the case of a loop, the condition codes
are set repeatedly). Any user-written code, either within or following a
structured statement, that references the CCR should be attentive to the
effect of these instructions.

6-10

CHAPTER 7

GENERATING POSITION INDEPENDENT CODE

7.1 FORCING POSITION INDEPENDENCE

When creating a relocatable program module, it is often desirable to ensure that
all references to operands in relocatable sections are position-independent ef-
fective addresses -- i.e., no absolute addresses occur as effective addresses
for such references. To avoid absolute effective address formats, it is neces-
sary to ensure that all memory operand references are resolved by the assembler
(or by the linkage editor at the assembler's direction) into one of the program
counter relative or address register indirect addressing modes. Avoiding ORG
directives is not sufficient to ensure position independence, because it is pos-
sible for the assembler to produce absolute effective address formats even when
no absolute symbols have been defined.

For example, if an instruction references a symbol that is not yet defined, or
is defined either in another section or as an XREF in an unspecified section,
the default action of the assembler is to direct the linkage editor to resolve
the reference by supplying the absolute address of the symbol. By specifying
OPT PCS; all references known to be in a relocatable section are resolved as a
Program Counter (PC) relative address. However, this does not solve the problem
of forward references, which would still default to absolute format. To over-
ride an absolute address mode when resolving the effective address format of an
operand, the following formats may be used to force program counter relative ad-
dressing:

a. Forcing program counter with displacement
An operand of the form: LABEL (PC)

is resolved as a PC with displacement effective address, either by the
assembler or by the linkage editor (at the assembler's direction). If
LABEL cannot be resolved into a 16-bit displacement from the program
counter, an error is generated.

b. Forcing PC with index plus displacement
An operand of the form: LABEL (PC,Rn)

is resolved as a PC with index plus displacement effective address by the
assembler. Because the displacement in this mode is eight bits, the re-
ference must be resolvable by the assembler. If LABEL cannot be resolved
by the assembler into an 8-bit displacement from the program counter, an
error is generated.

7.2 BASE-DISPLACEMENT ADDRESSING

Although PC relative addresses have the advantage of position-independence, such
address formats often are not the most meaningful to the programmer when debug-
ging an assembled module. There are many times when a programmer would prefer

to see an address relative to a specified base -~ i.e., in a base-
displacement format. This is especially true when addressing tables, arrays,

7-1

and other data structures. Base-displacement references to a given location are
"base relative" and, therefore, fixed with respect to a given base address; PC
relative references to that same location are different in each instruction.

Base—displacement addressing must be handled explicitly by the programmer. For
example, if the following data area is declared

TEMP DS $40
CONST DC $10
ARRAY1 DS.L $10
ARRAY2 DS.L $10
RESULT DS.L $10

the programmer may choose to load A6 with the address of TEMP and make
references to the other data locations as displacements from this base address.
For example, to move the first element of ARRAYl to D1, the programmer may
specify:

MOVE. L ARRAY1-TEMP(A6) ,D1
Indexing with the low order contents of DO may be added (as the array index):

MOVE.L. ARRAY1-TEMP(A6,D0) ,D1

7.3 BASE-DISPLACEMENT IN CONJUNCTION WITH FORCED POSITION INDEPENDENCE

Complete code-position independence can be achieved by using base-displacement
addressing in conjunction with the PCS option and the forced PC relative
addressing scheme outlined in paragraph 7-1. Although these techniques can be
used to avoid all undesired absolute address formats, there are significant
limitations of PC relative addressing in a position independent program, as
noted below:

a. PC with displacement
PC with displacement effective addresses are restricted only by the
16-bit displacement field. A displacement greater than 32K bytes from
the current PC cannot be resolved in this format.

b. PC with index plus displacement
The displacement field here is restricted to eight bits, limiting the
range of this format to a 128-byte displacement from the current PC.
This 8-bit displacement is not relocatable. Therefore, only symbols with
a known displacement from the program counter may be resolved in a PC
with index plus displacement format.

c. Operands in the alterable addressing category
Neither PC relative mode is allowed as an alterable operand. This is a
significant 1limitation in instructions which require an alterable

operand, such as the destination operand in a MOVE instruction.

By appropriate use of base registers, these limitations can be overcome.

7-2

APPENDIX A

INSTRUCTION SET SUMMARY

This appendix provides a summary of the MC68000/MC68010/MC68020/MC68881
instruction set. For detailed information, refer to the M68000 16/32-bit
Microprocessor Programmer's Reference Manual.

For the MC68881 only, the affected condition codes N Z I NAN are, respectively,
bits 31, 30, 29, and 28 of the floating-point status register, rather than bits
4, 3, 2, 1, and 0 of the status MC68000/MC68010/MC68020 register. Thus, the
four condition codes listed for MC68881 instructions refer to N Z I NAN,
respectively.

Following are two instruction set summary tables -- one for the MC68000/MC68010/
MC68020 and one for the MC68881.

INSTRUCTION SET SUMMARY - MC68000/MC68010,/MC68020

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX X N zZ v C

ABCD Add decimal with extend ABCD Dy,Dx * U * U *
ABCD -(Ay) ,- (Ax)

ADD Add binary (NOTE 1) ADD <ea>,Dn * ok ok k%
ADD Dn<ea>

ADDA Add address ADDA <ea> ,An - - - - -

ADDI Add immediate ADDI #<data>,<ea> L A

ADDQ Add quick ADDQ #<data>,<ea> LA R L

ADDX Add extended ADDX Dy,Dx * kK x %
ADDX - (Ay) ,- (Ax)

AND AND logical AND <ead>,Dn - * * 0 0
AND Dn,<ea>

ANDI AND immediate ANDI #<data>,<ea> - * * 0 0

ASL, ASR Arithmetic shift ASd Dx,Dy %k k% x
ASd #<data>,Dy
ASd <ea>

Bcc Branch conditionally Bcc <label> - - - - =

BCHG Test a bit and change BCHG Dn,<ea> - - * L
BCHG #<data>,<ea>

BCLR Test a bit and clear BCLR Dn,<ea> - - * - .
BCLR #<data>,<ea>

BFCHG Complement bit field (MC68020) BFCHG <ea)> {<offset>:<width>} - % * 0 0

BFCLR Clear bit field (MC68020) BFCLR <ea>{<offset>:<width>} - * ¥ 0 0

€-v

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX X N 2 v C

BFEXTS Extract bit field signed (MC68020) BFEXTS <ea>{<offset>:<width>},Dn - * * 0 0

BFEXTU Extract bit field unsigned BFEXTU <ead{<offset>:<width>},Dn - * * 0 0
(MC68020)

BFFFO Find first one in bit field BFFFO <ea>{<offset>:<width>},Dn - * * 0 0
(MC68020)

BFINS Insert bit field (MC68020) BFINS Dn,<ea>{<offset>:<width>} - * * 0 0

BFSET Set bit field (MC68020) BFSET <ea>{<offset>:<width>},Dn - * * 0 0

BEFTST Test bit field (MC68020) BFTST <ea>{<offset>:<width>} - * * 0 0

BKPT Breakpoint (MC68020) BKPT #<vector> - - - - -

BRA Branch always BRA <label> - - - - -

BSET Test a bit and set BSET Dn,<ea> - - * - -

BSET #<data>,<ea>
BSR Branch to subroutine BSR <label> - - - - -
BTST Test a bit BTST Dn,<ea> - - * - -
BTST #<data>,<ea>

CALLM Call module (MC68020) CALLM #ddd,<ea> - - - = =

CAS Compare and swap with operand CAS Dw,Do,<ea> - % * x %
(MC68020)

CAS2 Compare and swap with operand CAS2 Dwl:Dw2,Dol:Do2, (Rzl):(Rz2) - * * * %
(MC68020)

CHK Check register against bounds CHK <ea>,Dn - * U U U

CHK2 Check register against bounds CHK2 <ea>,Rn - U * U *

(MC68020)

INSTRUCTION SET SUMMARY - MC68000,/MC68010/MC68020 (cont'd)

‘ CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z v C

CLR Clear an operand CLR <ea> - 01 0 O
CMP Arithmetic compare CMP <ea>,Dn - *x Kk % %
CMPA Arithmetic compare address CMPA <ead>,An - * *x * %
CMPI Compare immediate CMPI #<data>,<ea> - % X X x
CMPM Compare memory CMPM (Ay)+, (Ax)+ - * % x %
CMP2 Compare register against bounds CMP2 <ea>,Rn - U * U *
(MC68020)
DBcc Test condition and decrement DBcc Dn,<label> B
and branch (NOTE 2)
DIVS Signed divide DIVS <ea>,Dn - * % % 0
DIVU Unsigned divide DIVU <ea>,Dn - % x *
EOR Exclusive OR logical é5;~5;:2ea> o - % ;-—6_—5--
EORI Exclusive OR immediate EORI #<data>,<ea> - * * 0 0
EXG Exchange registers EXG Rx,Ry - . - - -
EXT Sign extend EXT Dn - * * 0 0
EXTB Sign extend byte (MC68020) EXTB Dn - % * 0 0
EXTW Sign extend word (MC68020) EXTW Dn - * * 0 0

(Part of EXT instruction)

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z v C
JMP Jump JMP <ead> - - - - -
JSR Jump to subroutine JSR <ea> - - - - -
LEA Load effective address LEA <ea>,An - - - - -
LINK Link and allocate LINK An,#<disp> - - - - -
(NOTE 5)
LSL, LSR Logical shift Lsd Dx,Dy * k x Q *
LSd #<data>,Dy
LSd <ea>
MOVE Move data from source to MOVE <ea>,<ea> - * * 0 9
destination
MOVE to SR Move to the status register MOVE <ea>,SR * % ok Xk %
MOVE from SR Move from the status register MOVE SR,<ea> - - - - -
MOVE to CC Move to condition codes MOVE <ea>,CCR * *x x k%
MOVE from CC Move from condition codes MOVE CCR,<ea> - - - - -
(MC68010 or newer)
MOVE USP Move user stack pointer MOVE USP,An - - - - -
MOVE An,USP
MOVEA Move address MOVEA <ea>,An - - - - -
MOVEC Move to/from control register MOVEC Rc,Rn - - - - -

(MC68010 or newer) (NOTE 3)

MOVEC Rn,Rc

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES
MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z v C
MOVEM Move multiple registers (NOTE 4) MOVEM <register list>,<ea> - - - - =
MOVEM <ea>,<register list>
MOVEP Move peripheral data MOVEP Dx,d (Ay) - -
MOVEP d(Ay) ,Dx
MOVEQ Move quick MOVEQ #<data>,Dn 0 0
MOVES Move to/from address MOVES <ea>,Rn - -
(MC68010 or newer) MOVES Rn,<ea>
MULS Signed multiply MULS <ea>,Dn 0 0
MULU Unsigned multiply MULU <ea>,Dn 0 0
NBCD Negate decimal with extend NBCD <ea> g *
NEG 2's complement negation NEG <ea> *
NEGX Negate with extend NEGX <ea> * *
NOP No operation NOP - -
NOT Logical complement HOT <ea> 0 0
OR Inclusive OR logical OR <ea>,Dn 0 0
OR Dn,<ea>
ORI Inclusive OR immediate ORI #<data>,<ea> 0 0
DACK Pack BCD (MC68020) PACK - (Ay) ,- (Ax) - -

Push effective address

PACK Dy,Dx

PEA <ea>

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX X N 2 v C
RESET Reset external devices RESET - - - - -
ROL, ROR Rotate without extend ROd Dx,Dy - * * 0 *
ROd #<data>,Dy
RO4 <ead>
ROXL, ROXR Rotate with extend ROXd Dx,Dy ¥ * x (*
ROXd #<data>,Dy
ROXd <ea>
RTD Return from subroutine with RTD #<disp> - - - - =
displacement (MC68010 or newer)
(NOTE 5)
RTE Return from exception RTE x ok k x %
RTM Return from module (MC68020) RTM Rn - .- - = -
RTR Return and restore RTR L
condition codes
RTS Return from subroutine RTS - - - - -
SCD Subtract decimal with extend SBCD Dy,Dx * Uy * U *
SBCD - (Ay) ,-(Ax)
Scc Set according to condition Scc <ea> - - - - =
STOP Stop program execution STOP #<data> - - - - -
SUB Subtract binary SUB <ea>,Dn X ok ok k%
SUB Dn,<ea>
SUBA Subtract address SUBA <ea>,An - - = - -

8-v¥

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z v C
SUBI Subtract immediate SUBI #<data>,<ea> x Kk x %
SUBQ Subtract quick SUBQ #<data>,<ea> LA A A
SUBX Subtract with extend SUBX Dy,Dx * Kk kx k K
SUBX - (Ay) ,~(Ax)
SWAP Swap register halves SWAP Dn - * *¥ 00
TAS Test and set an operand TAS <ea> - * * 0 0
Tcé - Trap on condition code (MC68020) Tcc - - - - =
TDIVS - Truncated signed (MC68020) TDIVS <ea>,{Di: }Dj - * *x x
TDIVU Truncated unsigned divide (MC68020) TDIVU <ea>,{Di: }Dj - * *x % 0
TPcc Trap on condition code (MC68020) TPCC #xxx - - - - =
TRAP Trap TRAP #<vector> - - - - -
TRAPV Trap on overflow TRAPV - - - - -
TST Test an operand TST <ea> - * % 0

INSTRUCTION SET SUMMARY - MC68000/MC68010/MC68020 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX X N Z v C
UNLK Unlink UNLK An -~ - - - =
UNPK Unpack BCD (MC68020) UNPK - (Ay) ,—- (Ax) - - - - =
UNPK Dy ,Dx - - - - -
NOTES: 1. <ea> specifies effective address.
2. The assembler accepts DBRA for the F (never true) condition.
3. Rc specifies control register.
4, <register list> specifies the registers selected for transfer to or from memory.
<register list> may be:
Rn - a single register.
Rn-Rm - a range of consecutive registers with m being greater than n.
Any combination of the above, separated by a slash.
5. <disp> is a 2's complement integer, 16 bits in size, which is sign extended to

32 bits before adding to the stack pointer.

0T-v¥

INSTRUCTION SET SUMMARY - MC68881

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX N Z I NAN

FABS Absolute value function FABS <ea>,FPn * ok ok %
FABS FPm,FPn
FABS FPn

FACOS Arccosine function FACOS <ea>,FPn ox k%
FACOS FPM,FPn
FACOS FPn

FADD Floating point add FADD <ea>,FPn I R
FADD FPm,FPn

FASIN Arcsine function FASIN <ea>,FPn x X % *
FASIN FPm,FPn
FASIN FPn

FATAN Arctangent function FATAN <ea>,FPn * ok x %
FATAN FPm,FPn

FATANH Hyperbolic arctangent function FATANH <ea>,FPn * ok * *
FATANH FPm,FPn
FATANH FPn

FBfpcc Co-processor branch conditionally FBfpcc <label> - - - - -

(MC68881)

FCMP Floating point compare FCMP <ea>,FPn * ok k%
FCMP FPm,FPn

FCOS Cosine function FCOS <ea>,FPn * X x %
FCOS FPm,FPn
FCOS FPn

FCOSH Hyperbolic cosine function FCOSH <ea> ,FPN * & k%

FOOSH FPm,FPn
FCOSH FPn

1T-¥

INSTRUCTION SET SUMMARY - MC68881 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX N Z I NAN
FDBfpcc Decrement and branch on condition FDBfpcc DN,<label> - - - -
(MC68881)

FDIV Floating point divide FDIV <ea>,FPn * kX% 0x
FDIV FPm,FPn

FETOX e**x function FETOX <ea>,FPn x x % *
FETOX FPm,FPn
FETOX FPn

FETOXM1 e**x (x-1) function FETOXM1 <ea>,FPn * Kk % *
FETOXM1 FPm,FPn
FETOXML FPn

FGETEXP Get the exponent function FGETEXP <ea>,FPn ¥ ok ox %
FGETEXP FPm,FPn
FGETEXP FPn

FGETMAN Get the Mantissa function FGETMAN <ea>,FPn *x % % %
FGETMAN FPm,FPn
FGETMAN FPn

FINT Integer part function FINT <ea>,FPn kX *
FINT FPm,FPn
FINT FPn

FLOG2 Binary log function FLOG2 <ea> ,FPn * k% *
FLOG2 FPm,FPn
FLOG2 FPn

FLOG10 Common log function FLOG10 <ea>,FPn * 0k k *

FLOG10 FPm,FPn
FLOG10 FPn

A4

INSTRUCTION SET SUMMARY - MC68881 (cont'd)

MNEMONIC

OPERATION

ASSEMBLER SYNTAX

CONDITION CODES

N Z

I.

NAN

FLOGN

FLOGNP1

FMOD

FMOVE

FMOVECR

Natural log function

Natural log (x+1) function

Floating point module

Move to floating point register
from memory or another floating
floating point register

Move from floating point register

to memory

Move to/from memory from/to
special register

Move a ROM-stored to a floating
point register

FLOGN <ea>,FPn
FLOGN FPm,FPn
FLOGN FPn

FLOGNPL <ea>,FPn
FLOGNP1 FPm,FPn
FLOGNPL FPn
FMOD <ea>,FPn
FMOD FPm,FPn

FMOVE <ea>,FPn
FMOVE FPm,FPn

FMOVE FPN,<ea>

FMOVE.P FPn,<ea>{#k}
FMOVE.P FPn,<ea>{Dn}

FMOVE <ea>,CONTROL|STATUS|IADDR

FMOVE CONTROL|STATUSIIADDR,(ea>

FMOVECR #ccc,FPn

*

*

*

*

CET-Y

INSTRUCTION SET SUMMARY - MC68881 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX N Z I NAN
FMOVEM Move to multiple floating point FMOVEM <ea>,<fp reg list> * x *x %
registers
Move to a data register or FMOVEM <ea>,Dn
special register FMOVEM <ea> ,CONTROL/STATUS/IADDR
Move from multiple floating FMOVEM <fp reg list>,<ea>
point registers to memory
Move from data register or FMOVEM Dn,<ea>
special register to memory FMOVEM CONTROL/STATUS/IADDR,<ea>
FMUL Floating point multiply FMUL <ea>,FPn * ok x %
FMUL FPm,FPn
FNEG Negate function FNEG <ea>,FPn * k x k
FNEG FPm,FPn
ENEG FPn
FNOP Floating point NO-OP FNOP * x * %
FREM Floating point remainder FREM <ea>,FPn * & *x 0%
FREM FPM,FPn
FRESTORE Restore internal state of FRESTORE <ea> - - - =
co-processor (MC68881)
FSAVE Co-processor save (MC68881) FSAVE <ea> - - = -
FSCALE Floating point scale exponent FSCALE <ea>,FPn * ok ok

FSCALE FPm,FPn

FSfpcc Set on condition (MC68881) FSfpcc <ea> - - - -

yi-v

INSTRUCTION SET SUMMARY - MC68881 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX N Z I NAN
FTfpcc Trap on condition without a FTfpcc - - - -
parameter (MC68881)
FTPfpcc Trap on cordition with a FTPfpcc #xxx - - - -
parameter (MC68881)
FSGLDIV Floating point single precision FSGLDIV <ea>,FPn I
divide FSGLDIV FPm,FPn
FSGLMUL Floating point single precision FSGLMUL <ea>,FPn * ok x ok
multiply FSGLMUL FPm,FPn
FSIN Sine function FSIN <ea>,FPn * ok k%
FSIN FPm,FPn
FSIN FPn
FSINCOS Sine/cosine function FSINCOS <ea>,FPm:FPn * k% *
FSINH Hyperbolic sine function FSINH <ea>,FPn * ok ox %
FSINH FPm,FPn
FSINH FPn
FSQRT Square root function FSQRT <ea>,FPn * *x % *
FSQRT FPm,FPn
FSQRT FPn
FSUB Floating point subtract FSUB <ea>,FPn * ok k&
FSUB FPm,FPn
FTAN Tangent function FTAN <ea>,FPn * ok Kk x

FTAN FPm,FPn
FTAN FPn

9T-¥/ST-¥

INSTRUCTION SET SUMMARY - MC68881 (cont'd)

CONDITION CODES

MNEMONIC OPERATION ASSEMBLER SYNTAX N Z I NAN
FTANH Hyperbolic tangent function FTANH <ea>,FPn * Kk k%
FTANH FPm,FPn
FTANH FPn
FTENTOX 10**x function FTENTOX <ea>,FPn * ok x %
FTENTOX FPm,FPn
FTENTOX FPn
FTEST Floating point test an operand FTEST <ea> * Kk KX %k
FTWOTOX 2%¥*x function FTWOTOX <ea>,FPn * ok X X
FTWOTOX FPm,FPn
FTWOTOX FPn
FYTOX Floating point y**x FYTOX <ea>,FPn * x x ok

FYTOX FPm,FPn

APPENDIX B

CHARACTER SET

The character set recognized by the Motorola M68000 Family Resident Structured
Assembler is a subset of ASCII (American Standard Code for Information
Interchange, 1968). The characters 1listed below are recognized by the
assembler, and the ASCII code is shown on the following pages.

1. The uppercase letters A through Z

2. The lowercase letters a through z (MC68020 assemblers or SYSTEM V/68
only)

3. The integers 0 through 9

4, Four arithmetic operators: + - * /

5. The logical operators: >> <K<K & !

6. Parentheses used in expressions ()

7. Characters used as special prefixes:

(pound sign) specifies the immediate mode of addressing
(dollar sign) specifies a hexadecimal number
(commercial "at") specifies an octal number

(percent) specifies a binary number
(apostrophe) specifies an ASCII literal character

- o0 @ N F

8. The special characters used in macros: < > \ @

9. Four separating characters:

(space)

(tab) (M68020 assemblers or SYSTEM V/68 only)
, (comma)
. {period)

10. A comment in a source statement may include any characters with ASCII
hexadecimal values from 20 (SP) through 7E (7).

11. Character used as a special suffix:

¢ (colon) specifies the end of a label

ASCII Character Set

CHARACTER COMMENTS HEX VALUE
NUL Null or tape feed 00
SOH Start of Heading 01
STX Start of Text 02
ETX End of Text 03
EOT End of Transmission 04
ENQ Enquire (who are you, WRU) 05
ACK Acknowledge 06
BEL Bell 07
BS Backspace 08
HT Horizontal Tab 09
LF Line Feed oA
VT Vertical Tab 0B
FF Form Feed 0cC

RETURN Carriage Return 0D
SO Shift Out (to red ribbon) OE
SI Shift In (to black ribbon) OF
DLE Data Link Escape 10
DC1 Device Control 1 11
DC2 Device Control 2 12
DC3 Device Control 3 13
DC4 Device Control 4 14
NAK Negative Acknowledge 15
SYN Synchronous idle 16
ETB End of Transmission Block 17
CAN Cancel 18
EM End of Medium 19
SUB Substitute 1a
ESC Escape, prefix 1B
FS File Separator 1C
GS Group Separator 1D
RS Record Separator 1E
Us Unit Separator 1F

B-2

ASCII Character Set (cont'd)

CHARACTER "COMMENTS HEX VALUE
Sp Space or blank 20
! Exclamation point 21
" Quotation marks (dieresis) 22
Number sign 23
S Dollar sign 24
% Percent sign 25
& Ampersand 26
! Apostrophe (acute accent, 27
closing single quote)
(Opening parenthesis 28
) Closing parenthesis 29
* Asterisk 2A
+ Plus sign 2B
’ Comma (cedilla) 2C
- Hyphen (minus) 2D
. Period (decimal point) 2E
/ Slant 2F
0 Digit 0 30
1 Digit 1 31
2 Digit 2 32
3 Digit 3 33
4 Digit 4 34
5 Digit 5 35
6 Digit 6 36
7 Digit 7 37
8 Digit 8 38
9 Digit 9 39
: Colon 3A
; Semicolon 3B
< Less than 3c
= Equals 3D
> Greater than 3E
? Question mark 3F

B-3

ASCII Character Set (cont'd)

CHARACTER COMMENTS HEX VALUE
@ Commercial at 40
A Uppercase letter A 41
B Uppercase letter B 42
C Uppercase letter C 43
D Uppercase letter D 44
E Uppercase letter E 45
F Uppercase letter F 46
G Uppercase letter G 47
H Uppercase letter H 48
I Uppercase letter I 49
J Uppercase letter J 4A
K Uppercase letter K 4B
L Uppercase letter L 4C
M Uppercase letter M 4D
N Uppercase letter N 4E
0 Uppercase letter O 4F
P Uppercase letter P 50
Q Uppercase letter Q 51
R Uppercase letter R 52
S Uppercase letter S 53
T Uppercase letter T 54
U Uppercase letter U 55
\Y Uppercase letter V 56
W Uppercase letter W 57
X Uppercase letter X 58
Y Uppercase letter Y 59
Z Uppercase letter Z 5a
[Opening hracket 5B
\ Reverse slant 5C
] Closing bracket 5D
- Circumflex 5E

Underline 5F

B~-4

ASCII Character Set (cont'd)

CHARACTER COMMENTS HEX VALUE
! Quotation mark 60
a Lowercase letter a 61
b Lowercase letter b 62
c Lowercase letter c 63
d Lowercase letter d 64
e Lowercase letter e 65
£ Lowercase letter £ 66
g Lowercase letter g 67
h Lowercase letter h 68
i Lowercase letter i 69
J Lowercase letter j 6A
k Lowercase letter k 6B
1 Lowercase letter 1 6C
m Lowercase letter m 6D
n Lowercase letter n 6E
o Lowercase letter o 6F
p Lowercase letter p 70
q Lowercase letter g 1
r Lowercase letter r 72
S Lowercase letter s 73
t Lowercase letter t 74
u Lowercase letter u 75
v Lowercase letter v 76
W Lowercase letter w 77
X Lowercase letter x 78
vy Lowercase letter y 79
z Lowercase letter z 7A
{ Opening brace B
| Vertical line 7C
} Closing brace 7D
- Equivalent 7E

DEL Delete F

B-5/B-6

APPENDIX C

SAMPLE ASSEMBLER OUTPUT

MOTOROLA M68000 ASM FIX : 108.DEMO MAIN .SA

1 *
g MAIN IDNT 2,3 Demonstration Program
*
4 * This program counts occurrences of vowels (A,E,I1,0,U)
5 * in the command line and outputs an error if fewer than 10
6 * vowels are found in the command line, aside from the vowels
7 * in the program name 'TSTPROG'.
8 * It is written in a contrived fashion to illustrate several
9 * features of the M68000 assembler.
10 *
11 OPT CRE ! Create a cross-reference listing
ig . OPT MEX ! Enable macro expansions
14 XREF.S 15:VOWEL ! Array containing vowel count info
15 XREF.S 15:STACK 1 Scratch stack space
16 XREF FINDV ! Routine that does the counting
17 XREF CMDLEN ! Length of the command line
18 *
19 * These are offsets into the vowel array contained in module FINDV.
20 * Each entry in this array contains 1 byte for the vowel's name
21 * and one byte for the count of occurrences of the vowel.
22 *
23 OFFSET 0
24 00000000 00000002 A DS.W 1
25 00000002 00000002 E DS.W 1
26 00000004 00000002 I DS.W 1
27 00000006 00000002 0] DS.W 1
28 00000008 00000002 4] DS.W 1
29 *
30 * This macro calls FINDV to count occurrences of the vowel
31 * contained in argument 1. It then adds that subtotal into
32 * the running total contained in Dl.
33 *
34 CHKVOWEL MACRO
35 MOVE.B #\1,D0 1 Store current vowel offset into VOWEL
36 JSR FINDV ! Find all occurrences of it
37 ADD.B \1+1(A0),D1 ! Add this to the total vowel count
38 ENDM
39 *
40
41 00000008 SECTION 8
42 8 00000000 START EQU *
43
44 8 00000000 5346 SUB.W #1,D6 ! Index command line from offset 0 and not 1
45 8 00000002 33C600000000 MOVE.W D6,CMDLEN ! Save the command line len
46 * ! as passed by VERSAdos
47 8 00000008 4FF80000 LEA STACK,A7 ! Initialize the stack area
48 8 0000000C 41F80000 LEA VOWEL ,A0 1 Start of the vowel table
49 8 00000010 4241 CLR.W D1 ! Current total vowel count
50 8 00000012 4280 CLR.L DO ! Will hold offset to current char later
51
52 8 00000014 CHKVOWEL A
8 00000014 103C0000 MOVE.B #A,DO ! Store current vowel offset into VOWEL
8 00000018 4EB900000000 JSR FINDV ! Find all occurrences of it
8 0000001E D2280001 ADD.B A+1(A0) ,D1 ! Add this to the total vowel count
53
54 8 00000022 CHKVOWEL E
8 00000022 103C0002 MOVE.B #E,DO ! Store current vowel offset into VOWEL
8 00000026 4EB900000000 JSR FINDV ! Find all occurrences of it
8 0000002C D2280003 ADD.B E+1(A0) ,D1 ! Add this to the total vowel count
55

C-1

56

[o Qe oI o) @ @ © @ @

@ @ ®

8

khdkkkk
de ke ko ok ok

SYMBOL

SYMBOL

A

CHKVOWEL

CMDLEN

E

FINDV

I
0

STACK
START

U

VOWEL

Z_L1.000

00000030
00000030
00000034
0000003A

103C0004
4EB900000000
D2280005

0000003E
0000003E
00000042
00000048

103C0006
4EB900000000
D2280007

0000004C
0000004C
00000050
00000056

103C0008
4EB900000000
D2280009

00000060
00000062
00000064
00000066

3041
700E
4E41
0000

00000068
0000006A

700F
4E41

00000000

TOTAL ERRORS
TOTAL WARNINGS

[
00—

TABLE LISTING

NAME SECT VALUE

00000000

MACR *
XREF * 00000000
00000002
00000000
00000004
00000006
XREF F 00000000
8 00000000
00000008
00000000
00000068

XREF *

CHKVOWEL I

MOVE.B #I,D0

JSR FINDV

ADD.B I+1(A0),Dl

CHKVOWEL O

MOVE.B #0,D0

JSR FINDV

ADD.B O+1(A0),Dl1

CHKVOWEL U

MOVE.B #U,DO

JSR FINDV

ADD.B U+1(A0),Dl

IF.B #10 <GT> D1 THEN.S
MOVE.W D1,A0
MOVE.L $14,D0
TRAP #1
DC.W 0

ENDI

MOVE.L $15,D0

TRAP #1

END START

CROSS-REF (LINENUMBERS)

-24
-34
-17
~-25
-16
-26
=27
-15
-42
-28
-14
-67

52
11
45
54
52
56
58
47
72
60
48
62

52 54 56

54 56 58

t— e o

— = e

o~ ——— o

Store current vowel offset into VOWEL
Find all occurrences of it
Add this to the total vowel count

Store current vowel offset into VOWEL
Find all occurrences of it
Add this to the total vowel count

Store current vowel offset into VOWEL
Find all occurrences of it

Add this to the total vowel count

Not enough vowels

generate error showing # of vowels found

Exit gracefully if all is OK

58 60

60

MOTOROLA M68000 ASM FIX : 108.DEMO LFINDV .SA

i *
2 FINDV IDNT 1,1 Routine subordinate to MAIN
3 *
4 * This routine counts occurrences of a given vowel. The vowel
5 * is identified by an offset into the vowel table. This offset
6 * is stored in DO.
7 * This routine is written in a contrived fashion to illustrate several
8 * features of the M68000 assembler.
9 *
10 OPT CRE ! Create a cross-reference listing
11 oPT CEX | Print DC expansions
12 *
13 XDEF VOWEL, FINDV, STACK ,CMDLEN ,CMDSTR
14 *
15 0000000F SECTION.S 15
16 *
17 * Register save area
18 *
19 F 00000000 00000040 RSAVE DS.L 8*2
20 *
21 * Stack area for the program
22 F 00000040 00000050 DS.L 20
23 F 00000090 00000004 STACK DS.L 1
24 *
25 * Following is the vowel array VOWEL.
26 * Each entry in this array contains 1 byte for the vowel's name
27 * and one byte for the count of occurrences of the vowel.
28 *
29 F 00000094 4100 VOWEL DC.B 'A',0
30 F 00000096 4500 DC.B 'E',0
31 F 00000098 4900 DC.B 'T,0
32 F 0000009A 4F00 DC.B '0',0
33 F 0000009C 5500 DC.B 'u*,0
34 *
35 * Next is the area which holds the command line length and string.
36 *
37 F 0000003E 0000 CMDLEN DC.W 0
38 F 000000A0 000000A0 CMDSTR COMLINE 160
39 *
40
41 00000008 SECTION 8
42 *
43 * On entry to this routine, DO contains the offset to the start
44 * of the current entry in the vowel table.
45 * This routine then tallies occurrences of the given vowel and
46 * stores that value in the table.
47 *
48 SAVEREG REG DO-D3/A0-A2
49 * *
50 8 00000000 FINDV EQU *
51 8 00000000 48F8070F0000 MOVEM.L SAVEREG,RSAVE ! Save all registers we are using
52
53 8 00000006 41F80094 LEA VOWEL, AQ
54 8 0000000A 12300000 MOVE.B 0(A0,DO.W),D1 ! Value of this vowel
55 8 0000000E 41F00001 LEA 1(A0,D0.W) ,AQ ! Addr of counter for this vowel
56 8 00000012 43F800A0 LEA CMDSTR, Al ! Addr of command line string
57 -
58 FOR D3 = #0 TO CMDLEN BY #1 DO
8 0000001A 6000000E BRA. Z L2.000
*kkdxkk WARNING 550-- -
59 8 0000001E 14313000 MOVE.B (Al,D3.W) ,D2 1 Current char is now in D2
60
61 IF.B D1 <EQ> D2 THEN.S
62 8 00000026 5210 ADDQ.B #1,(A0) ! Tally matching chars
63 ENDI

64
65
66

67 8 00000030 4CF8070F0000

68 8 00000036 4E75

69
70

***x%% TOTAL ERRORS
**%k4k TOTAL WARNINGS

SYMBOL TABLE LISTING

SYMBOL NAME

CMDLEN
CMDSTR
FINDV
RSAVE
SAVEREG
STACK
VOWEL
Z_L1.001
7 L1.002
Z_1.2.000

XDEF
XDEF
XDEF

REG
XDEF
XDEF

© 0 0Oy ry ¥ ry O 3 Mg

0-—- 58
1— 58

SECT VALUE

0000009E
000000A0
00000000
00000000

00000090
00000094
0000001E
00000028
0000002A

CROSS-REF (LINENUMBERS)

-37
-38
-50
-19
—-48
=23
-29
-58
-63
-65

ENDF

END

-13
-13
-13
51
51
~13
-13
65
61
58

MOVEM.L RSAVE,SAVEREG

65
56

67
67

53

C-4

Restore registers we used

APPENDIX D

EXAMPLE OF LINKED ASSEMBLY-LANGUAGE PROGRAMS UNDER VERSAdoOS

Motorola M68000 Linkage Editor

Command Line:

LINK 108.DEMO.MAIN/108.DEMO.FINDV,TSTPROG,TSTPROG; HIMUX
Options in Effect: -A,-B,-D,H,I,-L,M,0,P,-Q,-R,-S,-U,-W,X
User Commands: None

Object Module Header Information:
Module Ver Rev Language Date Time Creation File Name

MAIN 2 3 Assembly 09/13/82 13:12:27 FIX:108.DEMO.MAIN.SA
Demonstration Program

FINDV 1 1 Assembly 09/13/82 13:12:54 FIX:108.DEMO.FINDV.SA
Routine subordinate to MAIN

Load Map:

Segment SEG1(R) : 00000000 00000OFF 8,9,10,11,12,13,14

Module S T Start End Externally Defined Symbols
MAIN 8 00000000 0000006B
FINDV 8 0000006C 000000A3 FINDV 0000006C

Segment SEG2: 00000100 000002FF 15

Module S T Start End Externally Defined Symbols
FINDV 15 S 00000100 0000023F CMDLEN 0000019E CMDSTR 00000140
VOWEL 00000194 STACK 00000190

Table of Externally Defined Symbols:

Name Address Module Displ Sect Seg Library Input

CMDLEN 0000019E FINDV 0000009E 15 SEG2 FINDV .RO
CMDSTR 000001A0 FINDV 000000A0 15 SEG2 FINDV .RO
FINDV 0000006C FINDV 00000000 8 SEG1 FINDV .RO
STACK 00000190 FINDV 00000090 15 SEG2 FINDV .RO
VOWEL 00000194 FINDV 00000094 15 SEG2 FINDV .RO

Unresolved References: None

Multiply Defined Symbols: None

Lengths (in bytes):

Segment Hex Decimal
SEG1 00000100 256
SEG2 00000200 512
Total Length 00000300 768

No Errors
No Warnings

Load module has been created.

D-2

APPENDIX E

ASSEMBLY ERROR CODES

Error messages generated during an assembly may originate from the assembler or
from Pascal or the operating system environment. Assembler-generated messages
may be of two forms:

1, *%%k%* FRROR XXX —- nnnn
where xxx 1is the number of the error (defined in the 1list in this
appendix), and nnnn is the number of the line where the previous error

occurred.

Errors indicate that the assembler is unable to interpret or implement
the intent of a source line.

2, ¥*%kkx WARNING XXx —- nnnn
where xxx 1is the number of the error (defined in the list in this
appendix), and nnnn is the number of the line where the previous error

occurred,

Warnings may indicate possible recoverable errors in the source code, or
that a more optimal instruction format is possible.

ERROR CODE MEANING OF ERROR

SYNTACTIC ERRORS

200 Illegal character (in context)
201 Size code/extension is invalid
202 Syntax error
203 Size code/extension not allowed
204 Label required
205 End directive missing
206 Register ranges must be specified in increasing order
(e.g., Al-A3, DO-D7, FP2-FP6)
207 A and D registers can't be intermixed in a MOVEM register range

208 In the register pair Di:Dj, Di must be distinct from Dj.

ERROR CODE

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

226

230
231
232
233
234
235
236
237
238
239

MEANING OF ERROR

OPERAND/ADDRESS MODE ERRORS

Missing operand(s)

Too many operands for this instruction

Improper termination of operand field

Illegal address mode for this operand

Illegal forward reference

Symbol/expression must be absolute

Imnediate source operand required

Illegal register for this instruction

Illegal operation on a relative symbol

Memory shifts may be only single bit

Invalid shift count

Invalid section number

"{o:w}" or "{k}" expression not allowed here

Too many registers found in an M68020 addressing mode form
Too many expressions found in an M68020 addressing mode form
More than one pair of []s found in an M68020 addressing mode
form

"{o:w}" expression expected in this instruction

SYMBOL DEFINITION

Attempt to redefine a reserved symbol

Attempt to redefine a macro; new definition ignored
Attempt to redefine the command line location
Command line length must be > 0; ignored

Redefined symbol

Undefined symbol

Phasing error on PASS2

Start address must be in this module, if specified
Undefined operation (opcode)

Named common symbol may not be XDEF

E-2

ERROR CODE MEANING OF ERROR

DATA SIZE RESTRICTIONS

250 Displacement size error

251 Value too large

252 Address too large for forced absolute short
253 Byte mode not allowed for this opcode

254 Multiplication overflow

255 Division by zero

256 Value out of range

257 Branch to odd address detected

MACRO ERRORS

260 Misplaced MACRO, MEXIT, or ENDM directive

261 Macro definitions may not be nested

262 Illegal parameter designation

263 A period may occur only as the first character in a macro name
264 Missing parameter reference

265 Too many parameters in this macro call

266 Reference precedes macro definition

267 Overflow of input buffer during macro text expansion

CONDITIONAL ASSEMBLY ERRORS

270 Unexpected 'ENDC'
271 Bad ending to conditional assembly structure (ENDC expected)

E-3

ERROR CODE

280
281
282 .
2830
284
285

286
287
288
289
290
291
292

300
301

302
303
304
305
310
311
312

313

314

MEANING OF ERROR

STRUCTURED SYNTAX ERRORS

Misplaced structured control directive (ignored)
Missing "ENDI"

Missing "ENDE"

Missing "ENDW"

Missing "UNTIL"

Unresolved syntax error in the preceding parameterized
structured control directive; recovery attempted with the
current line

"=" Expected; characters up to "=" ignored
""" Expected; characters up to "<" ignored
">" Expected; characters up to ">" ignored
"DO" expected; remainder of line ignored
"THEN" expected; remainder of line ignored
"TO" or "DOWNTO" expected; "TO" assumed
Illegal condition code specified

MISCELLANEQUS

Implementation restriction

Too many relocatable symbols referenced
<linkage editor restricted>

Relocation of byte field attempted

Absolute section of length zero defined (link error)

Nested "INCLUDE" files not allowed; ignored

File name requirad in operand field

Illegal syntax for "P=nnnnn' option - option ignored

Illegal processor number for 'P=nnnnn' option - option ignored

Processor option does not agree with command line option —
option ignored

This directive is not valid for the processor that is currently
specified.

An "OFFSET" block must be followed by an "ORG" or "SECTION"
before more code is generated.

ERROR CODE

330
331

332

333

334

400

499

500
501
502
503

504

550
551
552

553

MEANING OF ERROR

FLOATING POINT ERRORS

Type (size) incompatibility exists between an operand and the
opcode size.

Exponent string is too long. Will be truncated on the right
which will almost certainly return the wrong value.

A non-decimal character was found in the decimal string. The
haracter will be ignored and the conversion will continue
although the results should be highly suspect.

The input decimal string is too big to be represented in the
specified size. Infinity or the largest positive or negative
nunber will be returned depending on the sign and current
rounding mode.

The input decimal string is too small to be represented in the
specified size. It was denormalized or reduced to zero.

INTERNAL ERRORS

SOURCE CODE NOT OPTIMAL OR RECOVERABLE ERRORS

This byte will be sign-extended to 32 bits
Missing parameter reference in macro source
Too many parameters in this macro call

Warning - processor type should not be changed after any
executable code is generated

Warning - processor type should not be changed after the user
once sets it

This branch can also allow a word extension

This absolute address could be short

This expression/displacement could be represented in 16 bits
rather than 32 bits.

Warning - this instruction may cause a branch to an odd address

ERROR CODE

700

701

702

703

MEANING OF ERROR

FLOATING POINT WARNINGS

Mantissa string is too long. It will be truncated after 17
digits.

Decimal strings can be guaranteed to be accurate only to double
precision in the worst case. In the best case, they are
accurate to extended precision.

The decimal string to fp conversion was inexact (some rounding
error occurred). This may or may not be important to the user.

Use of the L, D, X, and P extensions in the FSGLDIV and FSGLMUL
instructions may result in a loss of accuracy.

NOTE

If more than 10 errors occur in one line, the message

k*x*** to0 many errors on this line

will be generated.

E-6

SUGGESTION/PROBLEM /ST
REPORT s

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company Division

Street Mail Drop Phone
City State Zip
For Additional Motorola Publications Four Phase/Motoroia Customer Support, Tempe Operations
Literature Distribution Center (800) 528-1908

616 West 24th Street (602) 438-3100

Tempe, AZ 85282

(602) 994-6561

@ MOTOROLA

16867 PRINTED IN USA (6/84) MESSENGER 5M

